30 resultados para Aluminium, dissolved and reactive
Resumo:
The objective of this work was to evaluate the effectiveness of ruzigrass (Urochloaruziziensis) in enhancing soil-P availability in areas fertilized with soluble or reactive rock phosphates. The area had been cropped for five years under no-till, in a system involving soybean, triticale/black-oat, and pearl millet. Previously to the five-year cultivation period, corrective phosphorus fertilization was applied once on soil surface, at 0.0 and 80 kg ha-1 P2O5, as triple superphosphate or Arad rock phosphate. After this five-year period, plots received the same corrective P fertilization as before and ruzigrass was introduced to the cropping system in the stead of the other cover crops. Soil samples were taken (0-10 cm) after ruzigrass cultivation and subjected to soil-P fractionation. Soybean was grown thereafter without P application to seed furrow. Phosphorus availability in plots with ruzigrass was compared to the ones with spontaneous vegetation for two years. Ruzigrass cultivation increased inorganic (resin-extracted) and organic (NaHCO3) soil P, as well as P concentration in soybean leaves, regardless of the P source. However, soybean yield did not increase significantly due to ruzigrass introduction to the cropping system. Soil-P availability did not differ between soluble and reactive P sources. Ruzigrass increases soil-P availability, especially where corrective P fertilization is performed.
Resumo:
In this communication we describe a new methodology to Dieckmann cyclization of diethyl adipate (1) and diethyl pimelate (3) applying "push-pull" strategy using anhydrous aluminium trichloride and triethylamine in dichloromethane at room temperature. This method is very efficient, simple, safe and reproducible, giving the corresponding cyclic β-keto ester derivatives in 84% and 71% yield, respectively.
Resumo:
The efficiency of a new procedure for the digestion of natural waters, based on a microwave-activated photochemical reactor was evaluated in this work. Fluorescence spectra showed a 99% reduction in the emission of a 40 mg L-1 humic acid solution after 15 min of UV irradiation. In the presence of H2O2, only 3 min were necessary to accomplish a reduction of almost 100% in the emission and 6 min to reduce the concentration of dissolved organic carbon by 95%. The copper recovery from synthetic samples containing commercial humic acid, from soil suspensions, as well as from natural waters varied between 91.5 and 106.6%. The digestion of dissolved and unfiltered samples was successfully accomplished in 6 and 12 min, respectively. No contaminations or sample losses were observed. Results of copper speciation in natural waters showed that this metal is predominantly bound to natural ligands. Only 3-6% of the total recoverable copper is present in the labile form.
Resumo:
This work describes the mechanism of action of some reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the oxidative stress of the human body, and their consequences on damage to DNA, RNA, proteins and lipids. It also illustrates the defense system of our organism against these ROS and RNS species. The action of nonenzymatic protection systems is reported, with emphasis on micromolecules like Q10 coenzyme, vitamin C, alpha-tocopherol, carotenoids and flavonoids. The importance of flavonoids is also emphasized, and their body protection mechanism is detailed.
Resumo:
Ferric chloride as a new activating agent was used to obtain activated carbons from agroindustrial waste. This material was prepared at three temperatures of pyrolysis, 200, 280 and 400 ºC. The carbonaceous materials obtained after the activation processes showed high specific surface areas (BET), with values higher than 900 m² g-1. The materials showed different behaviors in the adsorption of methylene blue dye and reactive red textile dye in water solutions. An important fact in the use of FeCl3 as an activating agent is that the activation temperature is at 280 ºC, well below of those commonly employed in chemical or physical activations described in the literature.
Resumo:
The black, green and sour coffee defect (PVA) contributes with 20% of the total coffee production. It should be separate from the normal coffee grains in order to improve the final quality of the beverage. In this way, the present work has the objective to use the PVA reject for the production of activated carbon. The activated carbon (CA) was prepared from PVA defect using zinc chloride as activating agent. The prepared material (CA PVA) was characterized and the adsorption tests were carried out using as organic models methylene blue (AM) and reactive red (VR). The CA PVA revealed to be more efficient in the removal of the organic contaminants compared to a commercial activated carbon.
Resumo:
The quaternary chitosan was synthesized by reaction of chitosan with glycidyl trimethylammonium chloride. it was characterized by infrared spectra and conductometric titration. Adsorption of reactive blue 4 (RB4) and reactive red 120 (RR120) by quaternary chitosan was studied from aqueous medium. Two kinetic adsorption models were tested: pseudo first-order and pseudo second-order. The experimental data best fitted the pseudo second-order model. The Langmuir isotherm model provided the best fit to the equilibrium data in the concentration range investigated and the maximum adsorption capacity determined was 415 mg (RR120) and 637 mg (RB4) of reactive dye per gram of adsorbent.
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.
Resumo:
Oxidative stress is the result of an imbalance between oxidant and antioxidant species, with predominance of oxidative species with harmful action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) on cells. Changes in the levels of nitric oxide (NO) can be the cause and/ or a result of various pathophysiological processes. The main objective of this review is to address the relationship between oxidative stress and atherosclerosis in order to better understand the main features of this disease.
Resumo:
Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid (PUFA) present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.
Resumo:
The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent.
Resumo:
In mammals, hexokinase (HK) is strategically located at the outer membrane of mitochondria bound to the porin protein. The mitochondrial HK is a crucial modulator of apoptosis and reactive oxygen species generation. In plants, these properties related to HK are unknown. In order to better understand the physiological role of non-cytosolic hexokinase (NC-HK) in plants, we developed a purification strategy here described. Crude extract of 400 g of maize roots (230 mg protein) contained a specific activity of 0.042 µmol G6P min-1 mg PTN-1. After solubilization with detergent two fractions were obtained by DEAE column chromatography, NC-HK 1 (specific activity = 3.6 µmol G6P min-1 mg PTN-1 and protein recovered = 0.7 mg) and NC-HK 2. A major purification (yield = 500-fold) was obtained after passage of NC-HK 1 through the hydrophobic phenyl-Sepharose column. The total amount of protein and activity recovered were 0.04 and 18%, respectively. The NC-HK 1 binds to the hydrophobic phenyl-Sepharose matrix, as observed for rat brain HK. Mild chymotrypsin digestion did not affect adsorption of NC-HK 1 to the hydrophobic column as it does for rat HK I. In contrast to mammal mitochondrial HK, glucose-6-phosphate, clotrimazole or thiopental did not dissociate NC-HK from maize (Zea mays) or rice (Oryza sativa) mitochondrial membranes. These data show that the interaction between maize or rice NC-HK to mitochondria differs from that reported in mammals, where the mitochondrial enzyme can be displaced by modulators or pharmacological agents known to interfere with the enzyme binding properties with the mitochondrial porin protein.
Resumo:
We determined the anti-inflammatory activity of standardized extracts of four medicinal plant species (Baccharis incarum, B. boliviensis, Chuquiraga atacamensis, Parastrephia lucida) that grow in the Argentine Puna (3800 m above sea level) and that are used to reduce oxidative stress and alleviate gout and arthritic pain. The extracts of plant aerial parts were standardized in terms of total phenolic compounds and flavone/flavanone content and free radical scavenging activity. All extracts showed high phenolic compound concentration (0.5-1.6 mg/mL), mainly flavones and flavonols (0.1-0.8 mg/mL). The extracts showed hydrogen donating ability (DPPH and ABTS) and reactive oxygen species scavenging activity (O2●-, OH-, H2O2). The ability of the extracts to inhibit cyclooxygenase enzymes (COX-1 and COX-2) was determined by calculating percent inhibition of PGE2 production measured by enzyme immunoassay. All extracts inhibited both enzymes with IC50 values of 2.0 to 16.7 µg/mL. The anti-inflammatory activity of B. incarum and C. atacamensis extracts was higher than that of B. boliviensis and P. lucida. The IC50 values obtained for indomethacin were 0.11 and 0.78 µM for COX-1 and COX-2, respectively. The present results are consistent with the anecdotal use of these species in phytotherapic preparations.
Resumo:
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Resumo:
The pearl millet seed is small and its size varies, making sowing more difficult. The pelleting technique increases and homogenizes seed size, but it is essential to determine the physical and physiological characteristics of pelleted seeds. The physiological analysis consisted of: first germination count, final germination, speed emergence index, and seedling emergence. Physical analysis consisted of determining the 1000-seed weight, 1000-seed volume and fragmentation. The control treatment did not receive any coating, and the other 36 treatments combined four binders: bentonite, polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and methyl cellulose (Methocel®), and nine powder coating products: microcellulose, plaster, vermiculite, magnesium thermophosphate (Yoorin®), phytic acid, dicalcium phosphate, super simple phosphate (SS), monoamonic phosphate (MAP) and reactive phosphate. Among the materials used to form the pearl millet pellet, the most efficient binders were the polyvinyl acetate and the methyl cellulose, and as coaters, the vermiculite and the microcellulose.