272 resultados para A VIRUSES
Resumo:
Glucosidases are involved in key steps in the processing of oligosaccharides by cleaving O-glucose residues. Since they catalyze breaking and transfer reactions of glucosidic groups for the normal growth and development of all the cells, defects or genetic deficiencies in these enzymes are associated with serious disorders of the carbohydrate metabolism. Thus, glucosidases represent important targets to develop inhibitors, owing to their potential activities against viruses, tumoral growth and metastasis, diabetes, Gaucher's disease and other syndromes associated with the lisosomal storage of glucoesphingolipids, and osteoarthritis. This paper presents a description of the biochemical pathways and mechanisms of alpha and beta-glucosidases, and the currently available drugs capable to inhibit these enzymes.
Resumo:
Photodynamic Therapy uses photosensitive dyes and visible light that, combined in the presence of oxygen, produce cytotoxic species that cause tumor death. Microorganisms such as bacteria, fungi, yeasts and viruses (including HIV) can also be inactivated by visible light after treatment with an appropriate photosensitizer as an alternative low cost treatment for localized infections, viral lesions such as acnes, and fungical skin lesions for example. Besides, Photodynamic Inactivation can be used for sterilization of blood and its subproducts for clinical use, in the treatment of drinking water as well as in antimicrobial detoxification of foods.
Resumo:
The increasing incidence of microbial infections, high toxicity, and high level of resistance associated with conventional antibiotics has created a need for new drugs. Antimicrobial peptides (AMPs) constitute a promising alternative and/or an important source of knowledge given their ability to inhibit the growth and/or to kill bacteria, fungi, parasites and/or viruses through mechanisms of action different from those of non-peptide drugs. This review focused on this important class of organic compounds that includes hemocidins resulting from hemoglobin proteolysis in vivo and in vitro or from chemical synthesis, subject of research in foreign and Brazilian laboratories.
Resumo:
Proteases catalyze the hydrolysis of peptide bonds of proteins and peptides to produce smaller peptides and free amino acids. These enzymes are involved in physiologic processes such as blood coagulation and cellular death, and are related to life cycle of several viruses, such as hepatitis C, dengue, and AIDS. These features make most of proteases very important therapeutic targets for new pharmaceutical compounds. The development of peptidemimetics with improved pharmacokinetic properties is driving extensive research in the field of viral protease inhibitors. The present paper aims to highlight the design and synthesis of peptidemimetics that are able to inhibit viral proteases related to hepatitis C, dengue, and AIDS.
Resumo:
New techniques for treating wastewater, particularly the removal or degradation of organic pollutants and heavy metals, among other pollutants, have been extensively studied. The use of nanostructured iron oxides as adsorbent and photocatalyst for the removal of these contaminants has proved a promising approach, not only because of their high treatment efficiency, but also for their cost-effectiveness, having the flexibility for in situ and ex situ applications. In this review, we briefly introduced the most used kinds of iron oxide nanoparticles, some synthesis techniques for iron oxide nanostructure formation, their potential benefits in environmental clean-up, and their recent advances and applications in wastewater treatment. These advances range from the direct applications of synthesized nanoparticles as adsorbents for removing toxic contaminants or as catalysts to oxidize and break down noxious contaminants (including bacteria and viruses) in wastewater, to integrating nanoparticles into conventional treatment technologies, such as composite photocatalytic filters (membranes, sand and ceramic) that combine separation technology with photocatalytic activity. Finally, the impact of nanoparticles on the environment and human health is briefly discussed.
Resumo:
Transcriptase reverse - polymerase chain reaction (RT-PCR) and dot blot hybridization with digoxigenin-labeled probes were applied for the universal detection of Tospovirus species. The virus species tested were Tomato spotted wilt virus, Tomato chlorotic spot virus, Groundnut ringspot virus, Chrysanthemum stem necrosis virus, Impatiens necrotic spot virus, Zucchini lethal chlorosis virus, Iris yellow spot virus. Primers for PCR amplification were designed to match conserved regions of the tospovirus genome. RT-PCR using distinct primer combinations was unable to simultaneously amplify all tospovirus species and consistently failed to detect ZLCV and IYSV in total RNA extracts. However, all tospovirus species were detected by RT-PCR when viral RNA was used as template. RNA-specific PCR products were used as probes for dot hybridization. This assay with a M probe (directed to the G1/G2 gene) detected at low stringency conditions all Tospovirus species, except IYSV. At low stringency conditions, the L non-radioactive probe detected the seven Tospovirus species in a single assay. This method for broad spectrum detection can be potentially employed in quarantine services for indexing in vitro germplasm.
Resumo:
Garlic viruses often occur in complex infections in nature. In this study, a garlic virus complex, collected in fields in Brazil, was purified. RT-PCR was performed using specific primers designed from the consensus regions of the coat protein genes of Onion yellow dwarf virus, a garlic strain (OYDV-G) and Leek yellow stripe virus (LYSV). cDNA of Garlic common latent virus (GCLV) was synthesized using oligo-dT and random primers. By these procedures individual garlic virus genomes were isolated and sequenced. The nucleotide sequence analysis associated with serological data reveals the presence of two Potyvirus OYDV-G and LYSV, and GCLV, a Carlavirus, simultaneously infecting garlic plants. Deduced amino acid sequences of the Brazilian isolates were compared with related viruses reported in different geographical regions of the world. The analysis showed closed relations considering the Brazilian isolates of OYDV-G and GCLV, and large divergence considering LYSV isolate. The detection of these virus species was confirmed by specific reactions observed when coat protein genes of the Brazilian isolates were used as probes in dot-blot and Southern blot hybridization assays. In field natural viral re-infection of virus-free garlic was evaluated.
Resumo:
Apple stem grooving virus (ASGV) is one of the most important viruses infecting fruit trees. This study aimed at the molecular characterization of ASGV infecting apple (Malus domestica) plants in Santa Catarina (SC). RNA extracted from plants infected with isolate UV01 was used as a template for RT-PCR using specific primers. An amplified DNA fragment of 755 bp was sequenced. The coat protein gene of ASGV isolate UV01 contains 714 nucleotides, coding for a protein of 237 amino acids with a predicted Mr of approximately 27 kDa. The nucleotide and the deduced amino acid sequences of the coat protein gene showed identities of 90.9% and 97.9%, respectively, with a Japanese isolate of ASGV. Very high amino acid homologies (98.7%) were also found with Citrus tatter leaf capillovirus (CTLV), a very close relative of ASGV. These results indicate low coat protein gene variability among Capillovirus isolates from distinct regions. In a restricted survey, mother stocks in orchards and plants introduced into the country for large scale fruit production were indexed and shown to be infected by ASGV (20%), usually in a complex with other (latent) apple viruses (80%).
Resumo:
The Mal de Río Cuarto disease is caused by Mal de Río Cuarto virus (MRCV) transmitted by Delphacodes kuscheli. Comparative studies were carried out on the cytopathological alterations produced by MRCV in corn (Zea mays), wheat (Triticum aestivum) and barley (Hordeum vulgare), as seen with a transmission electron microscope. Corn plants were infected with viruliferous D. kuscheli collected from the endemic disease area (i.e. Río Cuarto County, Córdoba, Argentina). For the viral transmission to small grain cereal plants, laboratory rared insects were used. In this case, the inoculum source was wheat and barley plants infected with MRCV isolate grown in a greenhouse. Leaf samples with conspicuous symptoms were collected: enations and size reduction in corn; crenatures, swelling veins and dark green color in small grain cereals. Viral infection was corroborated by DAS-ELISA. Viroplasms containing complete and incomplete virus particles and fibrillar material were found in the cytoplasm of infected cells in all species. Mature virions were between 60 and 70 nm diameter. In wheat and barley, viroplasms and dispersed particles were observed only in phloem, while in corn virions were also found in cells of the bundle sheath. Crystalline arrays of particles were detected in corn enation constitutive cells. Tubular inclusions were found only in wheat samples. The three species showed abnormalities in the chloroplasts of affected cells. The results showed that MRCV cytopathology has similarities with other viruses from the genus Fijivirus, family family Reoviridae, but slight differences depending upon the host plant.
Resumo:
The cytopathology of grapevine (Vitis spp.) callus tissue infected with Grapevine leafroll-associated virus 3 (GLRaV-3), genus Vitivirus was studied in order to investigate the usefulness of callus cultures to study grapevine leafroll-associated viruses. Ultrathin sections were made from in vitro callus obtained from stems and shoots of GLRaV-3 infected grapevine plants. Callus was composed of two types of tissue. Translucent, soft callus was formed and composed of large loosely arranged cells, containing big vacuoles and a thin layer of cytoplasm. Other parts of the callus were brown-coloured and composed of small compactly arranged cells, which showed flexuous and rod-shaped closterovirus-like particles, with 10-12 nm in diameter, at higher magnifications. Groups of vesicles formed by a single membrane were also observed, with sizes ranging from 50-200 nm, containing fine fibrillar material, also typical of closterovirus infections. Virus concentration was monitored by Immunosorbent electron microscopy (ISEM) tests, which showed that in vitro culture of callus tissue from grapevine infected plants, could be used to study the GLRaV viruses through many successive generations, despite the decline in virus concentration after repeated transfers. No virus particles were observed in callus tissue obtained from healthy grapevines.
Resumo:
Viruses of to the family Geminiviridae are considered some of the most important pathogens in tropical and subtropical regions of the world. Members of one Geminiviridae genus, Begomovirus, have been causing severe losses, particularly in tomato (Lycopersicon esculentum) production in the Americas and the Caribbean. Several new begomoviruses have been reported in the region and, at least one, Tomato yellow leaf curl virus (TYLCV), has been brought in from the Old World via infected transplants. In addition, the recombination events that are playing an important role in Begomovirus diversity have increased the complexity of their control. This scenario has led to the search for control measures that go beyond traditional host genetic resistance, chemical controls and cultural practices. In this review, besides the recommended classical control measures, transgenic approaches will be discussed, as well as the mechanisms involved in their successful control of viruses.
Resumo:
Print-capture (PC) Polymerase chain reaction (PCR) was evaluated as a novel detection method of plant viruses. Tomato (Lycopersicon esculentum) plants infected with begomovirus (fam. Geminiviridae, gen. Begomovirus) and viruliferous whiteflies were used to study the efficiency of the method. Print-capturing steps were carried out using non-charged nylon membrane or filter paper as the solid support for DNA printings. Amplified DNA fragments of expected size were consistently obtained by PCR from infected plants grown in a greenhouse, after direct application of printed materials to the PCR mix. However, virus detection from a single whitefly and from field-grown tomato samples required a high temperature treatment of printed material prior to PCR amplification. Comparison of nylon membrane and filter paper as the solid support revealed the higher efficiency of the nylon membrane. The application of print-capture PCR reduces the chances of false-positive amplification by reducing manipulation steps during preparation of the target DNA. This method maintains all the advantages of PCR diagnosis, such as the high sensitivity and no requirement of radioactive reagents.
Resumo:
Many viral diseases, including leafroll, which is of great economic importance, affect grapevines (Vitis spp.). A complex of eight viruses [Grapevine leafroll-associated virus (GLRaV) -1 to 8] is associated with this disease. The objective of this study was to compare the variability of the 3' terminal region of the polymerase gene of three isolates of GLRaV-3 (Grapevine leafroll-associated virus-3), from Submédio do Vale do Rio São Francisco (Petrolina-PE) with that of other isolates available at the GenBank, including an isolate from North America and another from Southern Brazil. The viral RNA was extracted from three infected ELISA reactive plants and a fragment of 340 bp was amplified, by RT-PCR, using primers that recognize that portion of the polymerase gene found between nucleotides 8267 and 8606. The three isolates from Vale do Rio São Francisco named Pet-1, Pet-2 and Pet-3, showed similarities ranging from 98% and 94%, respectively to the isolates from North America (AF037268) and Southern Brazilian (AF438411). Considering the whole genome, the main variation found was one amino acid change at position 2766 (F2766Y). These preliminary data indicate the existence of a natural variation among GLRaV-3 isolates from grapevines. This could be due to the vegetative propagation and long cycle of the plant, associated with the error-prone nature of RNA-dependent RNA polymerase.
Resumo:
The subtropical Northwestern region of Argentina (provinces of Tucumán, Salta, Jujuy, Santiago del Estero and Catamarca) suffers from a high incidence of the whitefly Bemisia tabaci, and the detection of begomoviruses is also common. The Northwest is the main bean-growing region of the country, and approximately 10% of Argentina's soybean crop is grown in this area. We have used a PCR-based assay to establish the identity and genetic diversity of begomoviruses associated with bean and soybean crops in Northwestern Argentina. Universal begomovirus primers were used to direct the amplification of a fragment encompassing the 5' portion of the capsid protein gene. Amplified fragments were cloned, sequenced and subjected to phylogenetic analysis to determine the sequence identity to known begomoviruses. The data indicated the presence of four distinct begomoviruses, all related to other New World begomoviruses. The prevalent virus, which was present in 94% of bean and soybean samples and also in two weed species, is closely related to Sida mottle virus (SiMoV). A virus with high sequence identity with Bean golden mosaic virus (BGMV) was found in beans. The two remaining viruses displayed less than 89% identity with other known begomoviruses, indicating that they may constitute novel species. One of these putative novel viruses was detected in bean, soybean and tomato samples.
Resumo:
Leafroll is an economically important disease affecting grapevines (Vitis spp.). Nine serologically distinct viruses, Grapevine leafroll-associated virus-1 through 9, are associated with this disease. The present study describes the coat protein gene sequence of four GLRaV-3 isolates occurring in the São Francisco River basin, Northeastern Brazil. The viral RNA was extracted from GLRaV-3 ELISA-positive plants and the complete coat protein gene was amplified by RT-PCR. Sequences were generated automatically and compared to the complete coat protein sequence from North American (NY1) and Chinese (Dawanhong Nº2 and SL10) GLRaV-3 isolates. The four studied isolates, named Pet-1 through 4, showed deduced amino acid identities of 98-100% (Pet-1 through 3) and 95% (Pet-4) with North American and Chinese isolates. A total of seventeen amino acid substitutions was detected among the four characterized isolates in comparison to the NY1, Dawanhong No.2 and SL10 sequences. The results indicated the existence of natural variation among GLRaV-3 isolates from grapevines, also demonstrating a lack of correlation between sequence data and geographic origin. This variability should be considered when selecting regions of the viral genome targeted for reliable and consistent virus molecular detection.