380 resultados para Detecção de energia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a method for determination of hexavalent chromium in aqueous samples using liquid-liquid microextraction (LLME) and detection by Flame Atomic Absorption Spectrometry (F AAS) was developed. The LLME procedure was based on the extraction of Cr (VI) by acetone at a sample pH of 1.2. The use of saturated ammonium sulphate solution allowed effective separation of the aqueous and organic phases and acetone extracted chromium. The sample pH, acetone volume and stirring time were optimized by a full factorial design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of biodiesel is extremely important for its commercialization and use; oxidation of biodiesel is a critical factor because it decreases the fuel storage time. A commercial biodiesel was mixed with synthetic antioxidants, according to a simplex-centroid experimental mixture design, and its stability was evaluated through induction period and activation energy. In all trials, addition of antioxidants increased activation energy in the mixtures containing tertiary butylhydroquinone (TBHQ). When a mixture containing 50% TBHQ and 50% butylated hydroxyanisole was used, synergistic effect was observed, and the major activation energy obtained was 104.43 kJ mol-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a study about the feasibility of using a conventional digital camera, a cell-phone camera, an optical microscope, and a scanner as digital image capture devices on printed microzones. An array containing nine circular zones was drawn using graphics software and printed onto transparency film by a laser printer. Due to its superior analytical performance, the scanner was chosen for the quantitative determination of Fe2+ in pharmaceutical samples. The data achieved using scanned images did not differ statistically from those attained by the reference spectrophotometric method at the confidence level of 0.05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of [Ru(PAN)(PPh3)2(ISN)]Cl (PAN = 1-(2'-Pyridylazo)-2-naphtholate) to bovine serum albumin (BSA) was investigated by spectroscopic techniques. According to analysis of the results from the Stern-Volmer equation, the ruthenium complex is able to quench the fluorescence intensity of BSA via a dynamic mechanism. The thermodynamic parameters were calculated (ΔH = 30.3 kJ mol-1; ΔS = 195.4 J mol-1 K-1), indicating that hydrophobic force is the main interaction driving force. The site marker competitive experiments revealed that the binding site of ruthenium complex was in the sub-domain IIA of BSA. FTO glass with a film of BSA-[Ru(PAN)(PPh3)2(ISN)]Cl was used as an ascorbic acid sensor. The linear range of the modified electrode was between 1 and 8 × 10-6 mol L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glassy carbon electrode modified with ruthenium hexacyanoferrate (RuOHCF) was investigated as an electrocatalyst for the detection of procaine with the aim of quantification in pharmaceutical and forensic samples. The RuOHCF films were prepared by electrochemical deposition, and the parameters used in this process (concentration of RuCl3, K3Fe(CN)6, temperature, and number of cyclic voltammograms recorded in the modification step) were carefully optimized. Based on the optimal conditions achieved, the RuOHCF modified electrode allows the determination of procaine at 0.0 V with a detection limit of 11 nmol L-1using square wave voltammetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A colorimetric kit for methanol detection in ethanol-containing fuels and ease of use in the field was developed and tested. The analysis can detect the presence of methanol in fuels when exceeding specification (0.5% v/v) in about 20 min and its simple instrumentation does not require a specialist. The kit method was successfully validated at gas stations located in São Paulo State and the Federal District.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O enrolamento da folha da videira (Vitis spp.) é uma doença causada por até oito vírus, Grapevine leafroll-associated virus (GLRaV) 1 a 8, sorologicamente distintos e associados ao floema de videiras infetadas. Neste trabalho, foram detectados GLRaV-1 e -3 por DAS-ELISA em 6,9 e 14,7% das amostras analisadas, respectivamente, e provenientes de duas importantes regiões vitícolas do Brasil (Serra Gaúcha e Vale do São Francisco). Os GLRaV-2, -5 e -7 não foram detectados. O GLRaV-3 também foi detectado por dot-ELISA e western blot, observando-se a provável proteína capsidial com cerca de 36 kDa. Um fragmento de 340 pb, compreendendo o terminal 3' do gene da polimerase viral de GLRaV-3, foi amplificado por PCR e seqüenciado. As seqüências de nucleotídeos e aminoácidos deduzidos deste isolado apresentaram alta homologia, 95,0 e 97,1%, respectivamente, com outro isolado de GLRaV-3 (NY1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O ataque do nematóide de cisto da soja, Heterodera glycines, limita o potencial de expansão e maior produtividade de áreas plantadas com soja (Glycine Max). O conhecimento da distribuição espacial desse patógeno na lavoura é fundamental, para elaboração de estratégias de manejo. A área em estudo estava localizada em lavoura de soja, variedade BRS133, localizada no Município de Florínea, SP, com solos naturalmente infestados por H. glycines. Foram obtidas medidas de espectrorradiometria de campo, 112 dias após o plantio, nas regiões do visível e do infravermelho próximo do espectro eletromagnético, a fim de se conhecer o padrão da resposta espectral de plantas atacadas pelo fitonematóide. Paralelamente, foram retiradas amostras de solo e encaminhadas ao Laboratório de Nematologia, Departamento de Fitossanidade da Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Jaboticabal, onde foram processadas para determinação da densidade populacional do nematóide. As medidas do espectrorradiômetro foram transformadas em índice vegetativo, com diferença normalizada (NDVI), que foi relacionado com a densidade populacional do nematóide, peso da matéria fresca e número de vagens por planta. Observou-se que diferentes densidades de população estão diretamente relacionados com a resposta espectral das plantas expressa, através dos valores do NDVI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O fungo Bipolaris sorokiniana, agente causal da helmintosporiose da cevada (Hordeum vulgare), sobrevive como micélio em sementes infetadas e saprofiticamente nos restos culturais de seus hospedeiros. Em experimentos conduzidos em laboratório, diferentes métodos [papel-filtro, papel-filtro + componentes líquidos do meio seletivo de Reis (MSR), batata-dextrose-ágar (BDA), extrato de tomate-ágar, V-8-ágar, meio seletivo de Reis (MSR) e meio seletivo de Dodman & Reinke] foram comparados visando selecionar o mais sensível para detecção de B. sorokiniana em sementes de cevada. Os meios foram testados com e sem congelamento das sementes. Sem congelamento, os meios seletivos foram mais sensíveis na detecção de B. sorokiniana, seguidos pelo meio de BDA. O método papel-filtro padrão ocupou uma posição intermediária, estatisticamente inferior aos demais. Sob congelamento a -20 ºC (durante 16 h), o tratamento térmico anulou o efeito dos substratos na detecção do fungo, de tal modo que todos apresentaram comportamento estatisticamente semelhante. Esse procedimento não afetou positivamente a detecção do fungo-alvo deste estudo. O meio seletivo de Reis foi mais sensível que o de papel-filtro + congelamento na detecção de B. sorokiniana em sementes com diferentes níveis de incidência.