273 resultados para 230305 Carbono
Resumo:
The present manuscript shows the synthesis of nickel hydroxide supported in carbon (Ni(OH)2/C) as a alternative material for catalytic alcohol oxidation in alkaline medium. The Ni(OH)2/C was synthesized in different percentage using a sonic bath. No current densities variation during successive cyclic voltammetry experiments was observed. The Ni(OH)2/C electrodes exhibit a potent and persistent electrocatalytic activity towards the oxidation of different alcohols. In addition, alcohols electooxidation occurs in less positive potential compared with noble metal catalyst.
Resumo:
This work proposes a separation, recovery and reuse procedure of chemical residues with chromium. This residue was generated by the determination of oxidizable carbon in organic fertilizers samples. The Cr(VI) of the residue was reduced with ethanol and precipitated with NaOH. The Cr(OH)3 precipitate was separated and oxidized to dichromate ions with hydrogen peroxide. This solution was used another time in organic carbon determination. The uses of recycled dichromate solution were appropriated in four successive recycling. The accuracy was proven using potassium hydrogen phthalate and ten organic fertilizer samples. The organic carbon results, determined with recycled solutions, were similar the conventional solution.
Resumo:
Mn, Zn, Fe, Cd, Pb and Hg were determined in Zn-C and alkaline batteries manufactured along almost 20 years. After samples disassembly the electroactive components were treated with aqua regia in bath ice for 24 h. Metals were analyzed by ICP-OES. Zn and Mn amounts did not vary significantly. Fe amount decreased, specially after 2000. Hg, Cd and Pb amounts dramatically decreased along time, being virtually absent in alkaline batteries manufactured after 2005. Pb still remains in Zn-C samples. Scanning electron microscopy of batteries manufactured in 1997 and 1998 showed the presence of Bi, In and Cr in the plastic/paper anode-cathode separator.
Resumo:
A factorial design applied in a voltammetric stripping method for the measurement of Ag(I) in natural water is described. The procedure is based on the effective pre-concentration of silver ions on electrode surface. The calibration graph was linear in the silver concentration range from 7.92 x 10"7 to 1.07 x 10"5 mol L"1 with a detection limit of 3.81 x 10-7 mol L-1. The determination of Ag(I) in natural water samples was carried out satisfactory with the proposed electrode.
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
Spent alkaline and Zn-C batteries were placed in seawater, rainwater or landfill leachate at room temperature for up 30 days in order to simulate natural weathering. After the experiments pH and electrical conductivity of the liquid were measured. The precipitate formed and the filtrate were submitted to metal analysis by ICP-OES. Seawater is the most corrosive medium, followed by landfill leachate. Pb, Cd and Hg were mainly in the filtrate. Fe, Mn and Zn were generally dominant in the precipitate. Na and K account for the electrical conductivity and are good indicators of the corrosion stage of the batteries.
Resumo:
This work involved the study of degradation of the herbicide bentazone in aqueous solution by different routes, in order to search a method that generates safe products to the environment. It was tested electrochemical polarization methods involving positive and negative potential, irradiation with UV light and deposition of TiO2 on the electrode surface, seeking a catalytic effect. After different times of degradation, aliquots were removed and the scan of molecular absorption spectrum of UV-Vis was performed. From the spectra decay of bentazone, the kinetics of different processes was accompanied and the rate constants were determined.
Resumo:
There are many controversies regarding the cyto- and genotoxicity of carbon nanotubes (CNTs). In this work, we discuss that many of the incongruous arguments are probably associated with the poor physical-chemical characterization of the CNT samples used in many publications. This manuscript presents examples of carbon nanostructures observed under high resolution electron microscopy that can be found in typical CNT samples, and shows which roles in cyto- and genotoxicity need to be better investigated. Issues concerning chemical treatment are addressed and examples of misunderstandings that can occur during the studies of cyto- and genotoxicity of CNT samples are given.
Resumo:
PbO2 films were electroformed onto carbon cloth substrates (twill woven type) in acid conditions using the nitrate precursor by changing the electrodeposition current density, temperature and pH, in order to optimize the formation of the β-PbO2 phase. The crystal structure and morphology of the PbO2 films were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The optimum conditions obtained for formation of the β-PbO2 were presented and discussed.
Resumo:
The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 ºC in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 µm in length and with diameters of 80-200 nm, were formed.
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Resumo:
We describe general considerations about the present and the future standing of carbon nanostructures, mainly carbon nanotubes and graphene. Basic concepts and definitions, select structure/property relationships, and potential applications are reviewed. The analysis of the global market for these nanostructures, the commercial products available currently, the role of the chemistry, the main challenges remaining and a brief view of the field in Brazil are also presented and discussed.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
Rice husk ash (RHA) is used as a silica source for several purposes, among them to obtain metal catalysts, as was done in this work. The catalysts were characterized by chemisorption, physisorption, thermal analyses (TG, DSC), X-ray diffraction, X-ray fluorescence, temperature-programmed reduction and scanning electron microscopy. The catalysts synthesized with different Ni loadings supported on RHA were applied to the reaction of dry reforming of methane. The reaction was tested at three temperatures of catalytic reduction (500, 600 and 700 ºC). All synthesized catalysts were active for the studied reaction, with different H2/CO ratios achieved according to degree of metallic dispersion.