322 resultados para Cavidade dentária - Preparo
Resumo:
Pyrohydrolysis is proposed for fossil fuels sample preparation for further fluorine and chlorine determination. Samples were heated during 10 min at temperatures up to 1000 °C. Water vapor was passed through the reactor and the volatile products were condensed and collected in NH4OH solution. Fluoride was determined by potentiometry using an ion selective electrode (ISE) and Cl by ICP OES and DRC-ICP-MS. The results are in good agreement with certified values and the precision is better than 10% (n = 4). Sample preparation by means of pyrohydrolysis is relatively simple, whereas chlorine and fluorine can be determined at low concentrations.
Resumo:
The decomposition of detergent powder samples in a microwave oven and autoclave was evaluated. To establish the best experimental conditions a 2(5) factorial design was performed, varying the conditions in autoclave and microwave digestion and flow system parameters for the determination of phosphorus. The best composition was: 0.2 mL sulfuric acid; 500 W power and a 2 min time interval; 6 mmol L-1 of ascorbic acid and 16 mmol L-1 of molybdate to flow system. This factor levels use less reagents than the reference method. No statistically significant differences were found between the autoclave and microwave oven responses at the 95% confidence level.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
The variability in aflatoxin B1 concentration among peanut subsamples of 4 sample preparation procedures was evaluated. For each procedure, 18 samples were prepared involving dry comminuting/homogenization or dry roughly comminuting followed by the preparation of a aqueous slurry. Ten analytical samples were withdrawn from each sample/procedure and analyzed by thin layer chromatography. The coefficient of variation (CV%) among each set of 10 analytical samples was assumed to be associated with the sample preparation procedure. The procedure that made use of a subsample mill and preparation of a subsample slurry, showed lower variability (CV%) among the analytical subsamples.
Resumo:
In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.
Resumo:
The determination of pesticide residues in water samples by Liquid Chromatography require sample preparation for extraction and enrichment of the analytes with the minimization of interferences to achieve adequate detection limits. The Solid Phase Extraction (SPE), Solid Phase Microextraction (SPME), Stir Bar Sorptive Extraction (SBSE) and Dispersive Liquid-Liquid Microextraction (DLLME) techniques have been widely used for extraction of pesticides in water. In this review, the principles of these sample preparation techniques associated with the analysis by Liquid Chromatography with Diode Array Detection (LC-DAD) or Mass Spectrometry (LC-MS) are described and an overview of several applications were presented and discussed.
Resumo:
In this work, the materials used in the recovery of estrogens from aqueous matrices by filtration and solid phase extraction were evaluated. The results showed that glass-fiber filters allow a recovery and repeatability compatible with this type of analysis, whereas cellulose esters lead to significant losses of the analytes, mainly due to adsorption processes. On the other hand, the transferring of the sample to the extraction cartridges should be carried out with glass or Teflon tubing, since the adsorption observed with other polymeric materials (eg. silicone, Tygon, polyethylene and PVC) dramatically reduces the recovery and repeatability of the extraction process.
Resumo:
A method based on pyrohydrolysis was proposed for cement sample preparation and further chloride determination by spectrophotometry using flow injection analysis. Analytical parameters were evaluated and, under the selected conditions, the calibration curve was linear in the range of 0.2 to 10.0 µg mL-1 with r2 = 0.998. The limit of detection was5 µg g-1 of chloride and the relative standard deviation was less than 7%. The proposed pyrohydrolysis method is relatively simple and can be used for sample preparation for further spectrophotometric determination of low concentrations of chloride in cement.
Resumo:
Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.
Resumo:
Sample preparation is commonly considered a key step to achieve selective, sensitive, and reliable chemical analyses, particularly those involving complex matrices. Although the application of electric fields to improve the speed and efficiency of sample preparation methods has been proven, this approach is still considered to be state-of-the-art; hence, further development is necessary to improve future applications. This review describes the fundamentals, advances, applications, and perspectives of using electric fields to enhance sample preparation techniques such as liquid-liquid and solid-liquid extractions in conventional and microscale devices.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
Esferas de poliestireno foram obtidas através da polimerização do estireno sem a presença de emulsificante. A suspensão foi caracterizada por Espalhamento de Luz e Microscopia Eletrônica de Transmissão apresentando monodispersidade com tamanho em torno de 463 nm. O método de deposição vertical foi utilizado para preparar filmes em substratos de vidro a partir da suspensão de esferas. Filmes de opalas de alta qualidade foram obtidos e caracterizados por Espectroscopia de Reflectância, Microscopia Eletrônica de Varredura e Microscopia Óptica.
Resumo:
O preparo do solo para o plantio de espécies florestais visa disponibilizar água e nutrientes para o rápido estabelecimento das mudas. Apesar de recentemente técnicas menos intensivas de preparo serem preconizadas, há situações em que o preparo mais intensivo é necessário. Neste trabalho avaliou-se o efeito de quatro métodos de preparo nas propriedades físicas e químicas do solo, na produção de biomassa e na composição mineral de plantação reformada de Eucalyptus grandis. Os tratamentos T1) queima dos resíduos da floresta anterior, destoca e subsolagem; T2) queima e destoca; T3) somente queima; e T4) cultivo mínimo (coveamento manual) foram aplicados em área anteriormente usada com plantação de eucalipto manejado por talhadia, em terceira rotação, e situada em Latossolo Vermelho distrófico no município de Santa Bárbara-MG. Aos 38 meses após o plantio, a maior produção de biomassa (81,6 t/ha) foi verificada no tratamento com maior intensidade de preparo do solo, com decréscimo significativo à medida que o preparo era menos intenso. A menor produtividade (50,4 t/ha) foi obtida com o cultivo mínimo. Entretanto, o solo deste tratamento, na época de avaliação, apresentou melhores características químicas e maior acúmulo de manta orgânica. Portanto, o coveamento foi o método de preparo que levaria à maior sustentabilidade da produção florestal, em razão da menor exportação de nutrientes.
Resumo:
Este trabalho teve como objetivos avaliar o efeito do revolvimento do solo das entrelinhas na produtividade de rebrota de Eucalyptus saligna, por meio das modificações em alguns atributos físicos do solo, e estabelecer qual profundidade de revolvimento apresenta maior ganho em produtividade em solos de texturas distintas, no Estado de São Paulo. Os sistemas de preparo foram: grade até 20 cm de profundidade e subsolador até 30 cm. Foram obtidas amostras indeformadas do solo nas seguintes profundidades: 0 a 10, 10 a 20 e 20 a 30 cm, em nove repetições por tratamento; nos mesmos pontos foram coletadas amostras de solo para análise da fertilidade. Os seguintes atributos físicos do solo foram determinados: densidade do solo, porosidade total e de aeração, macro e microporosidade e da planta: altura e DAP (Diâmetro à Altura do Peito). No solo de textura média não houve efeito do preparo do solo no crescimento das plantas, sendo estabelecido correlação negativa entre a porosidade de aeração, na profundidade de 10 - 20 cm, e o incremento em DAP (r²= 0,74). Essa mesma correlação foi positiva no solo de textura argilosa (r² = 0,78). No solo de textura argilosa, os dois sistemas de preparo de solo apresentaram maiores incrementos em altura e DAP do que a testemunha, diferindo estatisticamente no nível de 1%, pelo teste de Tukey.