267 resultados para transição de fase
Resumo:
The strong reducing action of L-ascorbic acid (Vitamin C) are of fundamental interest in biochemical and related process. The oxidation of ascorbic acid by molecular oxygen and others oxidants are of fundamental importance, involving the intervention of transition metal ions as catalysts and the formation transition metal complexes of ascorbic acid as intermediates. The present article is intended to cover some aspects of the reactions of ascorbic acid and related compounds involving some transition metal ions.
Resumo:
Solid-phase microextraction (SPME) has been applied to direct extraction of 11 organophosphorus pesticides in water using a 100 mm fiber polydimethylsiloxane. The method was evaluated with respect time of exposure, detection limits (LODs), linearity and precision. The detection limits (S/N = 3) depend of each pesticide and varie about ng/L levels. The linearity was satisfactory with coefficients of correlation usually greater than 0.993. The precision of the method was determined by extraction from 4.0 mg/L aqueous standard with coefficients of variation between 5.7 to 17.2%.
Resumo:
The oxidation process of sulfur (IV) species (SO2, HSO3- e SO32-) by oxygen, catalysed by trace metal ion and complexes, can play an important role in atmospheric, analytical and bioinorganic chemistry. An overview of the most important reactions in these fields is presented. A fascinating redox cycling of the metal ions and complexes during such autoxidation process was revealed by the combination of kinetics and coordination chemistry studies.
Resumo:
In this article are presented some fundamental elements of the conventional and of the variational transition state theories which are needed to carried out calculations of semi-classical chemical dynamics. Some important bottlenecks in building reliable potential energy surfaces using electronic structure calculations are also discussed. It is put emphasis on the methodology of the variational transition state theory with interpolated corrections (VTST-IC), and its application in the calculations of the rate constants and of the kinetic isotope effect (KIE) of CH4 + Cl « CH3 + HCl reaction.
Resumo:
A simple and low cost flow cell is proposed for measurements by solid-phase spectrophotometry employing a conventional spectrophotometer. The flow cell geometry allows the employment of a large amount of the solid support without causing both excessive attenuation of the radiation beam and increasing of the back-pressure. The adaptation of the flow cell in the optical path of the spectrophotometer in order to increase the precision is discussed. The flow cell characteristics were demonstrated by measurements of Co(II), employing 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18 bonded silica as solid support. The apparent molar absorptivity and coefficient of variation were estimated as 1.86 x 10(5) L mol-1 cm-1 and 1.4 % (n=15). A sample throughput of 40 determinations per hour and a detection limit of 15 mug L-1 (99.7 % confidence level) were achieved.
Resumo:
A flow injection spectrophotometric method was developed for determining aspartame in sweeteners. Sample was dissolved in water and 250 µL of the solution was injected into a carrier stream of 5.0 x 10-5 mol L-1 sodium borate solution. The sample flowed through a column (14 cm x 2.0 mm) packed with Zn3(PO4)2 immobilized in a polymeric matrix of polyester resin and Zn(II) ions were released from the solid-phase reactor by formation of the Zn(II)-aspartame complex. The mixture merged with a stream of borate buffer solution (pH 9.0) containing 0.030 % (m/v) alizarin red S and the Zn(II)-alizarin red complex formed was measured spectrophotometrically at 540 nm. The calibration graph for aspartame was linear in the concentration range from 10 to 80 µg mL-1 with a detection limit of 4 µg mL-1 of aspartame. The RSD was 0.3 % for a solution containing 40 µg mL-1 aspartame (n = 10) and seventy results were obtained per hour. The proposed method was applied for determining aspartame in commercial sweeteners.
Resumo:
Fundamental aspects of Solid Phase Micro-Extraction (SPME) are discussed in the present paper. The application of SPME as a microtechnique of sample preparation for gas chromatographic analysis is considered and related to existing theoretical models. Both research prototypes and commercial SPME devices are considered.
Resumo:
The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.
Resumo:
Since its discovery, phase transfer catalysis (PTC) has grown considerably and nowadays is one of the most versatile preparative methods. The search for new catalysts, their use in PTC asymmetric synthesis and the attempts to understand their mechanistic role are modern and exciting topics of investigation. A review on main achievements in the last two decades is presented.
Resumo:
Biogenic emissions of volatile organic compounds play a fundamental role in the atmospheric chemistry, vegetation being one of their major sources. Amongst the VOCs emitted by plants, olefins and terpenoids are the most abundant. These compounds, due to the presence of two or more double bonds and other structural features, are very reactive in the atmosphere and act as precursors of the photochemical smog and aerosols. This article presents a review of the reactions of olefins and terpenoids with ozone, in the gas phase, with emphasis toward the mechanisms and kinetic aspects.
Resumo:
The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE) and solid phase microextraction (SPME). The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD). Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.
Resumo:
In the last decade we have seen improved a powerfull tool to medicinal chemistry: the Solid Phase Organic Synthesis (SPOS). This metodology can be used to synthesize a large library of compounds in a short time by combinatorial chemistry, where simple chemical substances can be combinated one to each other building a library of complex compounds. In this work we present the solid phase organic synthesis and their advantage upon the tradicional organic synthesis methodology, as well as the main polimers used in the SPOS technique.
Resumo:
The oxidation process of sulfur(IV) species by oxygen, ozone and nitrogen oxides, catalysed by trace metal ions, can play an important role in atmospheric chemistry processes like acid rain, visibility degradation and health hazard. An overview of the more relevant investigations on emissions sources, aqueous phase conversion process and environmental impact is presented.
Resumo:
The present review summarizes the most relevant results of our research group obtained recently in the field of unimolecular reaction dynamics. The following processes are specifically analyzed: the isomerization, dissociation and elimination in methyl nitrite, the fragmentation reactions of the mercaptomethyl cation, the C-CO dissociation in the acetyl and propionyl radicals, and the decomposition of vinyl fluoride. In all the cases, only state- or energy-selected systems are considered. Special emphasis is paid to the possibility of systems exhibiting non-statistical behavior.
Resumo:
Particles of porous silica or other solvent resistent inorganic oxides can be functionalized by aliphatic (e.g., C-8 or C-18) or other groups to give stationary phases for use in reversed phase HPLC. The functionalization can be done by bonding of individual groups to the surface of the support particles, by producing an organic polymeric film from pre-polymers, or by adsorbing/immobilizing pre-formed polymers on the surfaces. These three types of functionalization are reviewed.