470 resultados para extração multielementar
Resumo:
This study optimized and validated the liquid-liquid extraction technique with partition at low temperature (LLE-PLT) for identification and quantification of four pesticides (chlorpyrifos, λ-cyhalothrin, permethrin, bifenthrin) in water samples. Analyses were performed by HPLC-UV. The technique was efficient for pesticide recovery with extraction exceeding 86%. Chromatographic response was linear for the four compounds in the 10-45 µg L-1 range, with correlation coefficients greater than 0.99. Limits of detection and quantitation were less than 3.5 µg L-1 and equal to 10 µg L-1, respectively. The proposed method was applied to 29 water samples from the Jaíba Project in northern Minas Gerais.
Resumo:
Mixture Models can be used in experimental situations involving areas related to food science and chemistry. Some problems of a statistical nature can be found, such as effects of multicollinearity that result in uncertainty in the optimization of a dependent variable. This study proposes the application of the ridge model adapted for mixture planning considering the Kronecker (K-model) and Scheffe (S-Model) methods applied to response surfaces. The method determined the proportions of hexane, acetone and alcohol proportions that resulted in the maximum response of percentage of extracted pequi (Caryocar brasiliense) pulp oil.
Resumo:
A multiresidue method using HPLC/DAD for the determination of fourteen pesticides in water based on SPE, using SDVB (styrene divynilbenzene copolymer) as adsorbent was validated. Recoveries from 61 to 120%, relative standard deviation between 2 and 15% and detection limits from 0.07 to 0.75 µg L-1 were obtained. It was applied to 66 surface water samples collected in a degraded area at the headwaters of São Lourenço river, Mato Grosso, Brazil. Eight pesticides were detected in concentrations ranging from 0.15 to 35.25 µg L-1. Considering ecotoxicological data, carbendazim and carbofuran may represent a risk to aquatic organisms. These results draw attention to the contamination of this vulnerable degraded area.
Resumo:
The convenience of the multivariate optimization of SPME procedures through ANOVA calculated using Doehlert designs has been demonstrated for twelve PCBs in the complex matrix of milk. For this study, the main parameters of the extraction were selected and valued through univariate and multivariate optimization. In addition, the analysis of variance allowed identification of the statistically significant variables in this model: high temperature (95 ºC) and ionic strength (36% m/v) proved significant for all the PCBs while intermediate time (70 min) and low methanol concentration (5% v/v) also contributed to the extraction of the majority of these PCBs.
Resumo:
In this research work the effects of four solvents and their mixtures on the extraction of chlorogenic acids, caffeine and trigonelline in crude extracts of four coffee cultivars, traditional red bourbon, IAPAR59, IPR101 and IPR108 cultivars, were investigated by UV spectrophotometry and UV spectra obtained from RP-HPLC-DAD. The experimental results and the principal component analysis of UV spectra showed that the effect of solvent extraction of the metabolites does not depend on cultivars, because the spectral characteristics are similar, but the concentrations are different. The UV and UV-DAD spectra for four simplex centroid design mixtures were also similar but the concentrations of caffeine, trigonelline and the chlorogenic acids are different and depend on the solvent used in the extraction.
Resumo:
Chlorella sp. was used to assess algal lipid production with concentrated desalination. In order to investigate the action of the flocculating agent calcium chloride and pH, a Box-Behnken Design and a Central Composite Design (CCD) were carried out. Also, Soxhlet and Supercritical Fluid Extraction (SFE), with and without sonication lipid extraction methods, were examined. The optimal flocculation conditions were pH 10.0 and 2.0 g/L of calcium chloride concentration. The highest lipid content of Chlorella sp. was obtained using the Soxhlet extraction method. The most abundant fatty acid extracted by Soxhlet and SFE, with and without sonication, was palmitic acid, whose proportions were 57.4%, 35.3% and 25.5%, respectively.
Resumo:
Extraction/concentration is a crucial step for the analysis of organic compounds at trace level concentrations and dispersed in complex matrices. Solid-phase extraction (SPE) is one of the techniques used for this purpose. In this work, a low cost apparatus for SPE was developed that uses nitrogen under positive pressure and ensures the maintenance of the sample flow, while also allows the simultaneous extraction of different samples without cross-contamination and sample contact with plastic materials. For the system set up, easily accessible materials were used such as hypodermic needles, stainless steel tubes, rubber stoppers, and 3-way valves from serum delivery apparatus.
Resumo:
The objective of this study was to optimize and validate a solid-liquid extraction method with low-temperature partitioning (SLE/LTP) for the analysis of pesticides. This method was coupled with gas chromatography (GC/ECD) and used to evaluate the degradation of bifenthrin and pirimiphos-methyl in maize grains on exposure to ozone. The optimized SLE/LTP-GC/ECD method is simple, effective and consumes low quantities of the solvent. It can be routinely used for the determination of bifenthrin and pirimiphos-methyl in maize samples. The use of this method of analysis determined that the levels of the insecticides in maize grains were reduced on exposure of the grains to the ozone gas. The observed reduction in the levels of insecticide was directly proportional to the increase in the concentration of the ozone gas.
Resumo:
In this study, a method of solid-liquid extraction and purification at low temperature (SLE-PLT) to determine 16 polycyclic aromatic hydrocarbons (PAHs) in sewage sludge was optimized and validated. The analyses were performed by HPLC-UV. The extraction phase, homogenization procedure, influence of pH, ionic strength and clean-up of the extracts were optimized. Recoveries were higher than 63.4% for 11 PAHs. The correlation coefficients were greater than 0.99 and limits of detection and quantitation were less than 0.060 and 0.15 µg g-1, respectively. These values were lower than the maximum residue limits of PAHs established by European legislation. SLE-PLT proved a more practical, economical method with fewer steps compared to Soxhlet extraction (reference method) for PAHs in sewage sludge.
Resumo:
The purpose of this work was to study four different solvent mixtures intended to increase the yield of the extraction stage of clavulanic acid (CA), which is one of the steps in the purification process. Four central composite rotatable designs (CCRD) were utilized to optimize the solvent mixtures. The variables selected for the factorial design were solvent mixture ratio (mL/mL) and temperature (ºC). The results showed that the yield of CA extracted from fermentation broth with the solvent mixtures of methyl-ethyl-ketone and ethyl acetate, and methyl-isobutyl-ketone and ethyl acetate (44.7 and 50.0%, respectively) was higher than that of the individual ethyl acetate alone (36.5%).
Resumo:
A procedure was developed for determination of 5 sedatives and 14 β-blockers in swine kidney and subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three different procedures for extraction were tested, evaluated through recovery studies. The procedure using acetonitrile for extraction and cleanup with freezing at low temperature and dispersive solid phase extraction using 500 mg celite® 545 before the concentration step presented the better results. The dried samples were redissolved with methanol and analyzed using a LC-MS/MS system with electrospray ionization (ESI) operating in positive MRM mode. The recovery values for this procedure were in the 75-88% range. The robustness of the method was tested against small variations. The method was used to analyze carazolol, azaperone and azaperol in collaborative assay, obtaining results close to designed value.
Resumo:
C18 chemically bonded sorbents have been the main materials used in solid phase extraction (SPE). However, due their high hydrophobicity some hydrophobic solutes are strongly retained leading to the consumption of larger quantities of organic solvent for efficient recoveries. This work presents a sorbent with lower hydrophobicity but similar selectivity to the C18 sorbent, prepared by thermal immobilization of poly(dimethylsiloxane-co-alkylmethylsiloxane) (PDAS) on silica. PDAS has organic chains with methyl groups alternating with octadecyl or hexadecyl groups in its monomeric unities. For the Si(PDAS) sorbent presented, the polymeric layer was physically adsorbed on the silica surface with 12% carbon load. Although the coating of silica with the polymeric layer was incomplete, the PDAS provided better protection for the silica surface groups, promoting mostly hydrophobic interactions between analytes and the sorbent. Sorption isotherm studies revealed that the retention of hydrophobic solutes on Si(PDAS) was less intense than on conventional sorbents, confirming the lower hydrophobicity of the lab-made sorbent. Additional advantages of Si(PDAS) include simplicity and low cost of preparation, making this material a potential sorbent for the analysis of highly hydrophobic solutes.
Resumo:
A simple procedure for ultrasound-assisted extraction and colorimetric determination of iron in soil samples was developed. The iron concentration in the analyzed samples was determined by the colorimetric method and the results compared with inductively coupled plasma mass spectrometry (ICP-MS). Fifteen soil samples were analyzed and the iron concentration results compared with those obtained by ICP-MS using microwave-assisted sample digestion. The proposed procedure showed good efficiency for iron extraction and the results obtained by colorimetric determination exhibited good agreement with ICP-MS. Moreover, ultrasound-assisted extraction and colorimetric determination is a simple, fast and low-cost procedure for application in routine analysis.
Resumo:
AbstractA device comprising a lab-made chamber with mechanical stirring and computer-controlled solenoid valves is proposed for the mechanization of liquid-liquid extractions. The performance was demonstrated by the extraction of ethanol from biodiesel as a model of the extraction of analytes from organic immiscible samples to an aqueous medium. The volumes of the sample and extractant were precisely defined by the flow-rates and switching times of the valves, while the mechanic stirring increased interaction between the phases. Stirring was stopped for phase separation, and a precise time-control also allowed a successful phase separation (i.e., the absence of the organic phase in the aqueous extract). In the model system, a linear response between the analytical response and the number of extractions was observed, indicating the potential for analyte preconcentration in the extract. The efficiency and reproducibility of the extractions were demonstrated by recoveries of ethanol spiked to biodiesel samples within 96% and 100% with coefficients of variation lower than 3.0%.
Resumo:
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters intracellularly accumulated by many bacteria as an energy reserve material and carbon source. These biopolymers may be extracted from cells after their production phase, and the extraction process involves various individual operations to ensure adequate removal of the biopolymer from the cells. During this process, the following aspects should be considered: reduction of product losses during different stages of the process to obtain a highly pure product, preservation of physical and thermal characteristics, and use of low toxicity chemicals to achieve sustainable production and avoid harming the environment. The impact of the costs of PHA extraction on the total cost of the production process may account for over 50% of the end-value of the product. Within this context, several methods of PHA extraction have been reported in the literature. These methods include the use of solvents, chemical digestion, enzymatic digestion, mechanical extraction with high-pressure homogenization and ultrasound, extraction using supercritical fluids, or a combination of these methods. The present review of the literature shows strategies for extraction processes of PHAs produced by bacteria involving cell destabilization and/or breakage, recovery, and purification of the biopolymer.