84 resultados para Platelet - Rich plasma
Resumo:
This study was conducted to investigate the activation ability of the platelet-rich plasma (PRP) by pharmacological agents, as well as to verify the need or not of this activation for therapeutic use. The PRP was obtained from four healthy crossbred geldings aged 13 to 16 years (15±1years), and was processed for observation and quantification of the platelet morphology by using the transmission electron microscopy. All PRP samples were activated with 10% calcium chloride (CaCl2) solution, pure bovine thrombin or associated with CaCl2. The control (pure PRP) was not pharmacologically activated. In the pure PRP samples, 49% of the platelets were classified as state of activation uncertain, 41% as resting, 9% as fully activated and 1% as irreversibly damaged. Treatment with 10% CaCl2 provided a distribution of 54% platelets in state of activation uncertain, 24% as fully activated, 20% as resting, and 2% as irreversibly damaged. The platelet morphology of the bovine thrombin treated samples did not fit into classification adopted, as showing irregular shape with emission of large filamentous pseudopods, appearance of ruptured and whole granules in the remaining cytoplasm and extracellular environment. There was effect of the treatment on the platelet morphology (P=0.03). The 10% CaCl2 is an adequate platelet-activating agent. However, in cases the use of PRP under its liquid form is necessary, the use of pure PRP is recommended, since besides presenting an adequate percentage of fully activated platelets it also has significant amount of the resting type, which can be activated by substances found in the injured tissue.
Resumo:
Abstract: Platelet-rich plasma (PRP) is a product easy and inxpesnsive, and stands out to for its growth factors in tissue repair. To obtain PRP, centrifugation of whole blood is made with specific time and gravitational forces. Thus, the present work aimed to study a method of double centrifugation to obtain PRP in order to evaluate the effective increase of platelet concentration in the final product, the preparation of PRP gel, and to optimize preparation time of the final sample. Fifteen female White New Zealand rabbits underwent blood sampling for the preparation of PRP. Samples were separated in two sterile tubes containing sodium citrate. Tubes were submitted to the double centrifugation protocol, with lid closed and 1600 revolutions per minute (rpm) for 10 minutes, resulting in the separation of red blood cells, plasma with platelets and leucocytes. After were opened and plasma was pipetted and transferred into another sterile tube. Plasma was centrifuged again at 2000rpm for 10 minutes; as a result it was split into two parts: on the top, consisting of platelet-poor plasma (PPP) and at the bottom of the platelet button. Part of the PPP was discarded so that only 1ml remained in the tube along with the platelet button. This material was gently agitated to promote platelets resuspension and activated when added 0.3ml of calcium gluconate, resulting in PRP gel. Double centrifugation protocol was able to make platelet concentration 3 times higher in relation to the initial blood sample. The volume of calcium gluconate used for platelet activation was 0.3ml, and was sufficient to coagulate the sample. Coagulation time ranged from 8 to 20 minutes, with an average of 17.6 minutes. Therefore, time of blood centrifugation until to obtain PRP gel took only 40 minutes. It was concluded that PRP was successfully obtained by double centrifugation protocol, which is able to increase the platelet concentration in the sample compared with whole blood, allowing its use in surgical procedures. Furthermore, the preparation time is appropriate to obtain PRP in just 40 minutes, and calcium gluconate is able to promote the activation of platelets.
Resumo:
Malaria remains an important health problem in tropical countries like Brazil. Thrombocytopenia is the most common hematological disturbance seen in malarial infection. Oxidative stress (OS) has been implicated as a possible mediator of thrombocytopenia in patients with malaria. This study aimed to investigate the role of OS in the thrombocytopenia of Plasmodium vivax malaria through the measurement of oxidant and antioxidant biochemical markers in plasma and in isolated platelets. Eighty-six patients with P. vivax malaria were enrolled. Blood samples were analyzed for total antioxidant and oxidant status, albumin, total protein, uric acid, zinc, magnesium, bilirubin, total thiols, glutathione peroxidase (GPx), malondialdehyde (MDA), antibodies against mildly oxidized low-density lipoproteins (LDL-/nLDL ratio) and nitrite/nitrate levels in blood plasma and GPx and MDA in isolated platelets. Plasma MDA levels were higher in thrombocytopenic (TCP) (median 3.47; range 1.55-12.90 µmol/L) compared with the non-thrombocytopenic (NTCP) patients (median 2.57; range 1.95-8.60 µmol/L). Moreover, the LDL-/nLDL autoantibody ratio was lower in TCP (median 3.0; range 1.5-14.8) than in NTCP patients (median 4.0; range 1.9-35.5). Finally, GPx and MDA were higher in the platelets of TPC patients. These results suggest that oxidative damage of platelets might be important in the pathogenesis of thrombocytopenia found in P. vivax malaria as indicated by alterations of GPx and MDA.
Resumo:
The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP) is the main alternative for use in liquid form (injectable). These injectable form ofplatelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable) and its use with particulated bone graft materials in the polymerized form.
Resumo:
The surface of human syncytiotrophoblast does not induce maternal blood platelet aggregation even though it is not an endothelium. It can be surmised that as occurs in endothelial injury the subcellular components of the syncytiotrophoblast may have pro-or antiaggregatory activity. During congenital Chagas' disease which is associated to trophoblast lesions, platelets may play a role in the development of T. cruzi-induced placentitis. In the present work the aggregatory behaviour of normal human blood platelets was recorded after their challenging with subcellular fractions of syncytiotrophoblast isolated from normal and chagasic women. Nuclear, Mitochondrial, Microsomal and Supernatant fractions isolated from normal and chagasic syncytiotrophoblast failed to induce per se any aggregatory reaction on platelets. When samples of platelet-rich plasma (PRP) were preincubated with normal and chagasic nuclear fractions and then stimulated with collagen at threshold level (CT-PRP) an inhibition of the aggregatory response was observed. Treatment of CT-PRP with normal and chagasic mitochondrial fractions induced inhibition of platelet aggregation whereas only chagasic fraction reduced latency time. Microsornal fraction from normal placentas showed no significant effects on platelet aggregation. It is concluded that subcellular fractions of normal human syncytiotrophoblast do not exhibit any effect on platelet aggregation, whereas those subcellular fractions enriched in intracellular membrane components isolated from chagasic placentas inhibit platelet aggregation.
Resumo:
Acute thrombosis can be induced in rabbits by a triggering protocol using Russell's viper venom and histamine given after 8 months of a 1% cholesterol diet and balloon desendothelization. In the present study, we tested the hypothesis that aortic desendothelization performed 4 months before the triggering protocol without a high cholesterol diet is a highly effective and less expensive way of producing arterial atherosclerosis and thrombosis. Nineteen male New Zealand white rabbits on a normal diet were studied. The control group (N = 9) received no intervention during the 4-month observation period, while the other group (N = 10) was submitted to aortic balloon desendothelization using a 4F Fogarty catheter. At the end of this period, all animals were killed 48 h after receiving the first dose of the triggering treatment. Eight of 10 rabbits (80%) in the balloon-trauma group presented platelet-rich arterial thrombosis while none of the animals in the control group had thrombus formation (P<0.01). Thus, this model, using balloon desendothelization without dietary manipulation, induces arterial atherosclerosis and thrombosis and may provide possibilities to test new therapeutic approaches
Resumo:
Platelet function and plasma fibrinogen levels were evaluated in 14 patients, 10 males and 4females, aged 13-59years bitten by Bothrops genus snakes. There was a statistical difference (p < 0.05) among plasma fibrinogen levels evaluated 24 and 48 hours after envenomation. There was a tendency towards normalization after 48 hours of treatment. The low platelet number was clear in 24-48 hour evaluations with a tendency towards normalization after 48 hours of treatment (p<0.05). Fibrinogen levels and fibrin degradation product (FDP) levels appeared to be altered in 83.33% of patients evaluated. The authors suggest that platelet hypoaggregation is related to decreased fibrinogen and increased FDP levels.
Resumo:
Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.
Resumo:
An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.
Resumo:
von Willebrand factor (vWF) is a protein that mediates platelet adherence to the subendothelium during primary hemostasis. High plasma vWF concentrations have been reported in patients with various types of cancer, such as head and neck, laryngeal and prostatic cancer, probably representing an acute phase reactant. In the present study we determined the plasma levels of vWF antigen (vWF:Ag) by quantitative immunoelectrophoresis in 128 female patients with breast cancer as well as in 47 women with benign breast disease and in 27 healthy female controls. The levels of vWF:Ag were 170.7 ± 78 U/dl in patients with cancer, 148.4 ± 59 U/dl in patients with benign disease and 130.6 ± 45 U/dl in controls (P<0.005). We also detected a significant increase in the levels of vWF:Ag (P<0.0001) in patients with advanced stages of the disease (stage IV = 263.3 ± 113 U/dl, stage IIIB = 194.0 ± 44 U/dl) as compared to those with earlier stages of the disease (stage I = 155.3 ± 65 U/dl, stage IIA = 146.9 ± 75 U/dl). In conclusion, vWF levels were increased in plasma of patients with malignant breast disease, and these levels correlated with tumor progression.
Resumo:
Aluminum (Al3+) overload is frequently associated with lipid peroxidation and neurological disorders. Aluminum accumulation is also reported to be related to renal impairment, anemia and other clinical complications in hemodialysis patients. The aim of the present study was to determine the degree of lipid peroxidation, platelet aggregation and serum aluminum in patients receiving regular hemodialytic treatment. The level of plasma lipid peroxidation was evaluated on the basis of thiobarbituric acid reactive substances (TBARS). Mean platelet peroxidation in patients undergoing hemodialysis was significantly higher than in normal controls (2.7 ± 0.03 vs 1.8 ± 0.06 nmol/l, P<0.05). Platelet aggregation and serum aluminum levels were determined by a turbidimetric method and atomic absorption spectrophotometry, respectively. Serum aluminum was significantly higher in patients than in normal controls (44.5 ± 29 vs 10.8 ± 2.5 µg/l, P<0.05). Human blood platelets were stimulated with collagen (2.2 µg/ml), adenosine diphosphate (6 µM) and epinephrine (6 µM) and showed reduced function with the three agonists utilized. No correlation between aluminum levels and platelet aggregation or between aluminum and peroxidation was observed in hemodialyzed patients.
Resumo:
Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 ± 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 ± 7.1 vs 12.1 ± 4.5%; P < 0.05) and increased with both GJ (10.1 ± 7.1 before vs 16.9 ± 6.7% after: P < 0.05) and RW (10.1 ± 6.4 before vs 15.6 ± 4.6% after; P < 0.05). RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 ± 8.6 before vs 23.0 ± 12.0% after; P < 0.01). GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.
Resumo:
Disorders of the lipid metabolism may play a role in the genesis of abdominal aorta aneurysm. The present study examined the intravascular catabolism of chylomicrons, the lipoproteins that carry the dietary lipids absorbed by the intestine in the circulation in patients with abdominal aorta aneurysm. Thirteen male patients (72 ± 5 years) with abdominal aorta aneurysm with normal plasma lipid profile and 13 healthy male control subjects (73 ± 5 years) participated in the study. The method of chylomicron-like emulsions was used to evaluate this metabolism. The emulsion labeled with 14C-cholesteryl oleate and ³H-triolein was injected intravenously in both groups. Blood samples were taken at regular intervals over 60 min to determine the decay curves. The fractional clearance rate (FCR) of the radioactive labels was calculated by compartmental analysis. The FCR of the emulsion with ³H-triolein was smaller in the aortic aneurysm patients than in controls (0.025 ± 0.017 vs 0.039 ± 0.019 min-1; P < 0.05), but the FCR of14C-cholesteryl oleate of both groups did not differ. In conclusion, as indicated by the triglyceride FCR, chylomicron lipolysis is diminished in male patients with aortic aneurysm, whereas the remnant removal which is traced by the cholesteryl oleate FCR is not altered. The results suggest that defects in the chylomicron metabolism may represent a risk factor for development of abdominal aortic aneurysm.
Resumo:
Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.
Resumo:
We have shown that the free cholesterol (FC) and the cholesteryl ester (CE) moieties of a nanoemulsion with lipidic structure resembling low-density lipoproteins show distinct metabolic fate in subjects and that this may be related to the presence of dyslipidemia and atherosclerosis. The question was raised whether induction of hyperlipidemia and atherosclerosis in rabbits would affect the metabolic behavior of the two cholesterol forms. Male New Zealand rabbits aged 4-5 months were allocated to a control group (N = 17) fed regular chow and to a 1% cholesterol-fed group (N = 13) during a 2-month period. Subsequently, the nanoemulsion labeled with ³H-FC and 14C-CE was injected intravenously for the determination of plasma kinetics and tissue uptake of the radioactive labels. In controls, FC and CE had similar plasma kinetics (fractional clearance rate, FCR = 0.234 ± 0.056 and 0.170 ± 0.038 h-1, respectively; P = 0.065). In cholesterol-fed rabbits, the clearance of both labels was delayed and, as a remarkable feature, FC-FCR (0.089 ± 0.033 h-1) was considerably greater than CE-FCR (0.046 ± 0.010 h-1; P = 0.026). In the liver, the major nanoemulsion uptake site, uptake of the labels was similar in control animals (FC = 0.2256 ± 0.1475 and CE = 0.2135 ± 0.1580%/g) but in cholesterol-fed animals FC uptake (0.0890 ± 0.0319%/g) was greater than CE uptake (0.0595 ± 0.0207%/g; P < 0.05). Therefore, whereas in controls, FC and CE have similar metabolism, the induction of dyslipidemia and atherosclerosis resulted in dissociation of the two forms of cholesterol.