94 resultados para Fuzzy delphi method
Resumo:
The fuzzy logic admits infinite intermediate logical values between false and true. With this principle, it developed in this study a system based on fuzzy rules, which indicates the body mass index of ruminant animals in order to obtain the best time to slaughter. The controller developed has as input the variables weight and height, and as output a new body mass index, called Fuzzy Body Mass Index (Fuzzy BMI), which may serve as a detection system at the time of livestock slaughtering, comparing one another by the linguistic variables "Very Low", "Low", "Average ", "High" and "Very High". For demonstrating the use application of this fuzzy system, an analysis was made with 147 Nellore beeves to determine Fuzzy BMI values for each animal and indicate the location of body mass of any herd. The performance validation of the system was based on a statistical analysis using the Pearson correlation coefficient of 0.923, representing a high positive correlation, indicating that the proposed method is appropriate. Thus, this method allows the evaluation of the herd comparing each animal within the group, thus providing a quantitative method of farmer decision. It was concluded that this study established a computational method based on fuzzy logic that mimics part of human reasoning and interprets the body mass index of any bovine species and in any region of the country.
Resumo:
Brazilian milk production has grown steadily and in 2004 the country became self-sufficient in dairy production. This article develops possible scenarios for the milk production chain in Brazil for the year 2020 in order to contribute to decisions that must be made by stakeholders. A literature review on foresight and the use of scenarios was conducted, and a scenario writing approach based on Wright and Spers (2006) was adopted, which includes the use of the Delphi method, Michael Porter's Five Competitive Forces model, Interpretative Structural Modeling (ISM) (WRIGHT, 1991) and quantitative projections. This methodology provided four scenarios, with quantitative and qualitative elements: two exploratory scenarios ("milk, the new agribusiness star" and "a wasted future"), a most probable scenario ("continuous but uneven growth") and a desired scenario ("competitive family agriculture"). Overall, it is possible to note many market opportunities, as well as niche markets and the strengthening of cooperatives. Future prospects are also favorable to the dairy industry in general, but nearly all scenarios point to a concentration in the industrial sphere.
Resumo:
OBJECTIVE: To introduce a fuzzy linguistic model for evaluating the risk of neonatal death. METHODS: The study is based on the fuzziness of the variables newborn birth weight and gestational age at delivery. The inference used was Mamdani's method. Neonatologists were interviewed to estimate the risk of neonatal death under certain conditions and to allow comparing their opinions and the model values. RESULTS: The results were compared with experts' opinions and the Fuzzy model was able to capture the expert knowledge with a strong correlation (r=0.96). CONCLUSIONS: The linguistic model was able to estimate the risk of neonatal death when compared to experts' performance.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease) and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA) and by fuzzy max-min compositions (fuzzy), and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
This study aimed to evaluate the efficiency of multiple centroids to study the adaptability of alfalfa genotypes (Medicago sativa L.). In this method, the genotypes are compared with ideotypes defined by the bissegmented regression model, according to the researcher's interest. Thus, genotype classification is carried out as determined by the objective of the researcher and the proposed recommendation strategy. Despite the great potential of the method, it needs to be evaluated under the biological context (with real data). In this context, we used data on the evaluation of dry matter production of 92 alfalfa cultivars, with 20 cuttings, from an experiment in randomized blocks with two repetitions carried out from November 2004 to June 2006. The multiple centroid method proved efficient for classifying alfalfa genotypes. Moreover, it showed no unambiguous indications and provided that ideotypes were defined according to the researcher's interest, facilitating data interpretation.
Resumo:
Neste artigo, são apresentados testes empíricos para a investigação de ocorrência de fenômenos de sobre-reação e sub-reação no mercado de ações brasileiro. Para esses testes, é proposto um modelo baseado na teoria de conjuntos Fuzzy, que possui forte relação com as heurísticas de representatividade e ancoramento, estabelecidas na teoria de finanças comportamentais. O modelo proposto é empregado para a formação de carteiras e utiliza indicadores financeiros de companhias abertas. Para as análises são utilizados dois conjuntos de ações, um do setor de petróleo e petroquímica e outro do setor têxtil, com indicadores financeiros relativos ao período de 1994 a 2005.
Resumo:
Este trabalho desenvolve um novo modelo Fuzzy-DEA-Game (FDG) para apoiar o estabelecimento de estratégias de produção. Esse modelo combina a Análise Envoltória de Dados (DEA) com conceitos da Teoria dos Conjuntos Fuzzy e do Jogo da Barganha de Nash. O modelo permite uma avaliação da eficiência produtiva e econômica dos produtos, o que pode resultar num portfólio de produtos mais rentáveis e de interesse do mercado consumidor. O modelo foi aplicado em uma empresa do segmento de energia. Os resultados obtidos com a aplicação do modelo FDG mostraram-se aderentes à realidade da empresa estudada e forneceram metas para a redução dos níveis de recursos (entradas) necessários para a fabricação dos produtos e para aumento dos níveis de resultados (saídas) oriundos da comercialização desses produtos. Como resultado adicional importante, o modelo FDG permitiu a identificação dos produtos do portfólio que são mais sensíveis à ocorrência de incerteza.
Resumo:
A brief description of the main features of the health planning technique developed by the "Centro de Estudios del Desarrollo" (CENDES) in Venezuela, and proposed by the Pan-American Health Organization for use in Latin America, is presented. This presentation is followed by an appraisal of the planning method which includes comments both upon its positive aspects and upon its negative points. Comments are also made referring to other recent publications of the WHO/PAHO on health planning. In conclusion, the CENDES technique is considered a health planning method of great potential for use especially in underdeveloped areas, the success of its application depending upon the hability of the health planners to introduce the necessary modifications to adapt to the local circunstamces.
Resumo:
An alternative vector control method, using lambda-cyhalothrin impregnated wide-mesh gauze covering openings in the walls of the houses was developed in an area in the Eastern part of the interior of Suriname. Experimental hut observations showed that Anopheles darlingi greatly reduced their biting activity (99-100%) during the first 5 months after impregnation. A model assay showed high mortality both of mosquitoes repelled by the gauze as well as of those that succeeded in getting through it. A field application test in 270 huts showed good acceptance by the population and good durability of the applied gauze. After introducing the method in the entire working area, replacing DDT residual housespraying, the malaria prevalence, of 25-37% before application dropped and stabilized at between 5 and 10% within one year. The operational costs were less than those of the previously used DDT housespraying program, due to a 50% reduction in the cost of materials used. The method using widemesh gauze impregnated with lambdacyhalothrin strongly affects the behavior of An. darlingi. It is important to examine the effect of the method on malaria transmission further, since data indirectly obtained suggest substantial positive results.
Resumo:
OBJETIVO: Desenvolver e comparar dois modelos matemáticos, um deles baseado em regressão logística e o outro em teoria de conjuntos fuzzy, para definir a indicação para a realização do exame cintilográfico a partir de resultados dos exames laboratoriais. MÉTODOS: Foram identificados 194 pacientes que tiveram cálcio e paratormônio séricos medidos a partir da base de registros de cintilografia de paratiróides realizadas em laboratório de diagnóstico de São Paulo, no período de janeiro de 2000 a dezembro de 2004. O modelo de regressão logística foi desenvolvido utilizando-se o software SPSS e o modelo fuzzy, o Matlab. A performance dos modelos foi comparada utilizando-se curvas ROC. RESULTADOS: Os modelos apresentaram diferenças estatisticamente significantes (p=0,026) nos seus desempenhos. A área sob a curva ROC do modelo de regressão logística foi de 0,862 (IC 95%: 0,811-0,913) e do modelo de lógica fuzzy foi 0,887 (IC 95%: 0,840-0,933). Este último destacou-se como particularmente útil porque, ao contrário do modelo logístico, mostrou capacidade de utilizar informações de paratormônio em intervalo em que os valores de cálcio mostraram-se pouco discriminantes. CONCLUSÕES: O modelo matemático baseado em teoria de conjuntos fuzzy pareceu ser mais adequado do que o baseado em regressão logística como método para decisão da realização de cintilografia das paratiróides. Todavia, sendo resultado de um exercício metodológico, inferências sobre o comportamento do objeto podem ser impróprias, dada a não representatividade populacional dos dados.
Resumo:
OBJECTIVE To propose a method of redistributing ill-defined causes of death (IDCD) based on the investigation of such causes.METHODS In 2010, an evaluation of the results of investigating the causes of death classified as IDCD in accordance with chapter 18 of the International Classification of Diseases (ICD-10) by the Mortality Information System was performed. The redistribution coefficients were calculated according to the proportional distribution of ill-defined causes reclassified after investigation in any chapter of the ICD-10, except for chapter 18, and used to redistribute the ill-defined causes not investigated and remaining by sex and age. The IDCD redistribution coefficient was compared with two usual methods of redistribution: a) Total redistribution coefficient, based on the proportional distribution of all the defined causes originally notified and b) Non-external redistribution coefficient, similar to the previous, but excluding external causes.RESULTS Of the 97,314 deaths by ill-defined causes reported in 2010, 30.3% were investigated, and 65.5% of those were reclassified as defined causes after the investigation. Endocrine diseases, mental disorders, and maternal causes had a higher representation among the reclassified ill-defined causes, contrary to infectious diseases, neoplasms, and genitourinary diseases, with higher proportions among the defined causes reported. External causes represented 9.3% of the ill-defined causes reclassified. The correction of mortality rates by the total redistribution coefficient and non-external redistribution coefficient increased the magnitude of the rates by a relatively similar factor for most causes, contrary to the IDCD redistribution coefficient that corrected the different causes of death with differentiated weights.CONCLUSIONS The proportional distribution of causes among the ill-defined causes reclassified after investigation was not similar to the original distribution of defined causes. Therefore, the redistribution of the remaining ill-defined causes based on the investigation allows for more appropriate estimates of the mortality risk due to specific causes.