97 resultados para AT1 receptors
Resumo:
We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P<0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 µmol/100 g body weight as a bolus, iv, plus a 30-min infusion of 0.018 µmol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P<0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 ± 0.28 mM, angiotensin II, N = 9 vs 6.4 ± 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.
Resumo:
Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. On the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
To assess the role of angiotensin II in the sensitivity of the baroreflex control of heart rate (HR) in normotensive rats (N = 6) and chronically hypertensive rats (1K1C, 2 months, N = 7), reflex changes of HR were evaluated before and after (15 min) the administration of a selective angiotensin II receptor antagonist (losartan, 10 mg/kg, iv). Baseline values of mean arterial pressure (MAP) were higher in hypertensive rats (195 ± 6 mmHg) than in normotensive rats (110 ± 2 mmHg). Losartan administration promoted a decrease in MAP only in hypertensive rats (16%), with no changes in HR. During the control period, the sensitivity of the bradycardic and tachycardic responses to acute MAP changes were depressed in hypertensive rats (~70% and ~65%, respectively) and remained unchanged after losartan administration. Plasma renin activity was similar in the two groups. The present study demonstrates that acute blockade of AT1 receptors with losartan lowers the MAP in chronic renal hypertensive rats without reversal of baroreflex hyposensitivity, suggesting that the impairment of baroreflex control of HR is not dependent on an increased angiotensin II level.
Resumo:
Losartan, an AT1 angiotensin II (ANG II) receptor non-peptide antagonist, induces an increase in mean arterial pressure (MAP) when injected intracerebroventricularly (icv) into rats. The present study investigated possible effector mechanisms of the increase in MAP induced by icv losartan in unanesthetized rats. Male Holtzman rats (280-300 g, N = 6/group) with a cannula implanted into the anterior ventral third ventricle received an icv injection of losartan (90 µg/2 µl) that induced a typical peak pressor response within 5 min. In one group of animals, this response to icv losartan was completely reduced from 18 ± 1 to 4 ± 2 mmHg by intravenous (iv) injection of losartan (2.5-10 mg/kg), and in another group, it was partially reduced from 18 ± 3 to 11 ± 2 mmHg by iv prazosin (0.1-1.0 mg/kg), an alpha1-adrenergic antagonist (P<0.05). Captopril (10 mg/kg), a converting enzyme inhibitor, injected iv in a third group inhibited the pressor response to icv losartan from 24 ± 3 to 7 ± 2 mmHg (P<0.05). Propranolol (10 mg/kg), a ß-adrenoceptor antagonist, injected iv in a fourth group did not alter the pressor response to icv losartan. Plasma renin activity and serum angiotensin-converting enzyme activity were not altered by icv losartan in other animals. The results suggest that the pressor effect of icv losartan depends on angiotensinergic and alpha1-adrenoceptor activation, but not on increased circulating ANG II.
Resumo:
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10-14 to 10-7 M) and/or losartan, 10-16 to 10-6 M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cytotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10-13 M and 10-12 M AII concentrations. The addition of losartan (up to10-14 M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.
Resumo:
(ANP, 1 µM) on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interaction of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED) and late (LD) distal tubules in rats during in vivo stopped-flow microperfusion experiments. The intratubular pH was measured with a double-barreled microelectrode with H+-sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81%) and LD (54%) segments via activation of AT1 receptors, as well as vacuolar H+-ATPase in LD segments (33%). ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of action of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluorescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 µM) alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM), and inhibition of H+ extrusion at higher ANG II levels (100 nM). To obtain more information on the mechanism of interaction of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension. The data indicate that the addition of increasing concentrations of ANG II (1 pM to 1 µM) to the cell suspension led to a progressive increase in [Ca2+]i to 2-3 times the basal level. In contrast, the addition of ANP (1 µM) to the cell suspension led to a very rapid 60% decrease in [Ca2+]i and reduced the increase elicited by ANG II, thus modulating the effect of ANG II on [Ca2+]i. These results may indicate a role of [Ca2+]i in the regulation of the H+ extrusion process mediated by Na+/H+ exchange and stimulated/impaired by ANG II. The data are compatible with stimulation of Na+/H+ exchange by increases of [Ca2+]i in the lower range, and inhibition at high [Ca2+]i levels
Resumo:
The nucleus tractus solitarii (NTS) in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II), neuropeptide Y (NPY) and noradrenaline (NA) are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension
Resumo:
In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9% NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 ± 0.04 ml/min vs 1.45 ± 0.18 ml/min in vehicle-treated rats, P<0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 ± 0.34 ml/60 min and 3.39 ± 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.
Resumo:
We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.
Resumo:
There is a close association between the location of angiotensin (Ang) receptors and many important brain nuclei involved in the regulation of the cardiovascular system. The present review encompasses the physiological role of Ang II in the brainstem, particularly in relation to its influence on baroreflex control of the heart and kidney. Activation of AT1 receptors in the brainstem by fourth ventricle (4V) administration to conscious rabbits or local administration of Ang II into the rostral ventrolateral medulla (RVLM) of anesthetized rabbits acutely increases renal sympathetic nerve activity (RSNA) and RSNA baroreflex responses. Administration of the Ang antagonist Sarile into the RVLM of anesthetized rabbits blocked the effects of Ang II on the RSNA baroreflex, indicating that the RVLM is the major site of sympathoexcitatory action of Ang II given into the cerebrospinal fluid surrounding the brainstem. However, in conscious animals, blockade of endogenous Ang receptors in the brainstem by the 4V AT1 receptor antagonist losartan resulted in sympathoexcitation, suggesting an overall greater activity of endogenous Ang II within the sympathoinhibitory pathways. However, the RSNA response to airjet stress in conscious rabbits was markedly attenuated. While we found no effect of acute central Ang on heart rate baroreflexes, chronic 4V infusion inhibited the baroreflex and chronic losartan increased baroreflex gain. Thus, brainstem Ang II acutely alters sympathetic responses to specific afferent inputs thus forming part of a potentially important mechanism for the integration of autonomic response patterns. The sympathoexcitatory AT1 receptors appear to be activated during stress, surgery and anesthesia.
Resumo:
Nitric oxide (NO) influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS). Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C) hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight) divided into 2K1C (N = 19) and sham-operated (N = 19) groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9) was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5) or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5), which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.
Resumo:
Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.
Resumo:
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Resumo:
Experimental Chagas' disease (45 to 90 days post-infection) showed serious cardiac alterations in the contractility and in the pharmacological response to beta adrenergic receptors in normal and T. cruzi infected mice (post-acute phase). Chagasic infection did not change the beta receptors density (78.591 ± 3.125 fmol/mg protein and 73.647 ± 2.194 fmol/mg protein for controls) but their affinity was significantly diminished (Kd = 7.299 ± 0.426 nM and Kd = 3.759 ± 0.212 nM for the control) p < 0.001. This results demonstrate that the alterations in pharmacological response previously reported in chagasic myocardium are related to a significantly less beta cardiac receptor affinity. During this experimental period serious cardiac cell alterations take place and functional consequences will be detected in the chronic phase.