2 resultados para Matériel thermosensible

em Bioline International


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bean bruchids, Acanthoscelides obtectus Say and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae), are cosmopolitan pests of stored dry common beans ( Phaseolus vulgaris L. ), causing damage through reduction of grain quality and seed germination. Biological resistance to these bruchids was definitively established in non-cultivated bean accessions, and has been introgressed into a range of drybean market classes. However, existing resistance to bruchids in Uganda’s common bean germplasm has not been systematically studied. In this study, 45 bean genotypes from the National Bean-Breeding Programme (25 genotypes) and agroecologically diverse bean growing areas in Uganda (20 genotypes), were evaluated for postharvest bruchid resistance. None of the evaluated bean genotypes expressed resistance to either bruchid species, with all the 45 bean genotypes supporting bruchid development, reproduction and feeding. All genotypes were severely damaged by bruchids feeding, resulting in significant (P<0.05) reduction of seed germination. Reduction in seed germination was related to the number of emergence holes and seed size; small bean seeds damaged by up to 2 bruchid emergence holes had a 7.1% reduction in germination, while large bean seeds with a similar number of emergence holes showed a 25% reduction in germination. Whereas this study further confirms bruchids as important storage pests of beans causing direct loss through consumption of the seed and indirect loss through viability deterioration, the resistance to bruchids in the evaluated range of Uganda’s dry bean germplasm is inadequate for direct exploitation in a breeding programme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternaria blight (AB) of sweet potato ( Ipomoea batatas L. ), caused by Alternaria spp., was recently reported in South Africa, but is common in southern and eastern Africa. Elsewhere in the world, AB is controlled primarily using resistant varieties. Twenty-five sweet potato varieties/breeding lines, from different origins were assessed for tolerance to AB. The materials were planted in fields having a history of AB disease and rated for tolerance based on a General Disease Index (GDI), with the lowest scores representing tolerance, and the higher scores representing susceptibility. Variety 199062-1 had the lowest GDI value, and was the most tolerant to AB; while W119 had the highest GDI value and was the most susceptible to the disease. Other varieties/breeding lines showed a variation in GDI values between most tolerant and most susceptible. Among the fungicides tested under field conditions, the mixture azoxystrobin-difenoconazole was the most effective in reducing AB intensity. Fungicides pyraclostrobin-boscalid, unizeb, azoxystrobin-chlorothalonil and cymoxanil-mancozeb were also effective against the disease.