7 resultados para Cell assay
em Bioline International
Resumo:
Purpose: To evaluate the cytotoxic activity of chloroform and water root extracts of Albertisia papuana Becc. on T47D cell line and identify the volatile compounds of the extracts. Methods: The plant roots were extracted with chloroform and water using maceration and boiling methods, respectively. The cytotoxicity of the extracts on T47D were determined using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Doxorubicin was used as reference drug in the cytotoxicity test while Probit analysis was used to calculate the Median Growth Inhibitory Concentration IC50 of the extracts. The volatile compounds in the chloroform and water root extracts were analyzed using Gas Chromatography-Mass Spectrophotometry GC-MS. Results: The IC50 of the chloroform and water extracts were 28.0 ± 6.0 and 88.0 ± 5.5 μg/mL, respectively whereas that of doxorubicin was 8.5 ± 0.1 μg/mL. GC-MS results showed that there were 46 compounds in the chloroform extract, out of which the five major components are ethyl linoleate (49.68 %), bicyclo (3.3.1) non-2-ene (29.29 %), ethyl palmitate (5.06 %), palmitic acid (3.67 %) and ethyl heptadecanoate (1.57 %).The water extract consisted of three compounds, butanoic acid (15.58 %); methyl cycloheptane (3.45 %), and methyl 2-O-methylpentofuranoside (80.96 %). Conclusion: The chloroform root extract of A. papuana Becc. had a fairly potent anticancer activity against breast cancer cells and may be further developed as an anticancer agent. Its major components were fatty acids and fatty acid esters.
Resumo:
Purpose: To evaluate the anti-apoptotic effect of phyllanthin on alcohol-induced liver cell death in HepG2 cells alone and in co-culture with human monocytic (THP-1) differentiated macrophage cells. Methods: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with 1, 5 and 10 μM phyllanthin for 24 h followed by 1300 mM alcohol for HepG2 cells and 2000 mM alcohol for the co-cultured cells. Thereafter, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) changes, apoptotic cell death and caspase-3/7 activities were assessed. Results: Alcohol exposure significantly increased intracellular ROS generation (p < 0.001), decreased MMP changes (p < 0.001), increased the number of apoptotic and necrotic cells (p < 0.001) and also induced higher caspase-3/7 activity (p < 0.001) in the co-culture with THP-1 differentiated macrophage cells than in HepG2 cells alone. Pretreatment of HepG2 cells and co-cultured cells with phyllanthin for 24 h prior to alcohol exposure significantly decreased intracellular production of ROS (p < 0.001) and also increased the change in MMP (p < 0.001) as well as caused a decrease in the number of apoptotic and necrotic cells (p < 0.001), but inhibited caspase-3/7 activity (p < 0.001). Conclusion: The results indicate that phyllanthin treatment may have a significant therapeutic effect on alcohol-related liver diseases.
Resumo:
Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system implemented on the Herpes simplex virus 1 (HSV-1) bacterial artificial chromosome (BAC). Growth properties of HSV-1 UL43 mutants were analyzed using plaque morphology and one-step growth kinetics. SDS-PAGE and Western blot was employed to assay the synthesis of the viral glycoproteins. Virus-penetration was assayed to determine if UL43 protein is required for efficient virus entry. Results: Lack of UL43 expression resulted in significantly reduced plaque sizes of syncytial mutant viruses and inhibited cell fusion induced by gBΔ28 or gKsyn20 (p < 0.05). Deletion of UL43 did not affect overall expression levels of viral glycoproteins gB, gC, gD, and gH on HSV-1(F) BAC infected cell surfaces. Moreover, mutant viruses lacking UL43 gene exhibited slower kinetics of entry into Vero cells than the parental HSV-1(F) BAC. Conclusion: Thus, these results suggest an important role for UL43 protein in mediating virus-induced membrane fusion and efficient entry of virion into target cells.
Resumo:
Purpose: To investigate the effect of licochalcone A (LA) on the inhibition of cell proliferation and ERK1/2 phosphorylation in bladder carcinoma cell lines. Methods: Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Dye-binding method was used to examine the concentration of proteins. Lymphocytes were extracted from mice and after surface staining were subjected to BD fixation and permeabilization for intracellular staining. Flow cytometry was used to measure cellular fluorescence. Results: MTT results revealed a significant decrease in the proliferation of UM-UC-3, J82 and HT-1197 cell lines on treatment with LA. LA also induced reduction in phosphorylation of ERK1/2 in all three carcinoma cell lines. In the mouse model, licochalcone A treatment via intraperitoneal (ip) administration induced a significant decrease in the level of regulatory T cells (Tregs). Comparison of the mouse interferon-α (IFN-α)-treated and LA-treated groups revealed that LA treatment caused enhancement of cytotoxic T lymphocyte (CTL) activity similar to that of IFN-α. Administration of UM-UC-3 cells in C3H/HeN mice resulted in marked reduction in the counts for splenocytes and CD4+ CD25+ Foxp3+ T (regulatory T cells) cell proportion in LA-treated mice compared to untreated control group. Conclusion: Licochalcone A may be of therapeutic importance for the prevention of bladder carcinoma. However, studies are required to ascertain the compound’s usefulness in this regard.
Resumo:
Purpose: To optimize the extraction conditions of polysaccharides from Polygonum perfoliatum L. (PSDP) and to evaluate their anti-tumor activities on A549 cell line. Methods: Extraction of PSDP was optimized using Box-Behnken design (BBD). Three factors of response surface methodology (RSM) including extraction time, ratio of water to raw material and number of extractions were employed to optimize the yield of PSDP. The cytotoxic effect of PSDP on human lung carcinoma A549 cell line was evaluated in vivo, while its effects on expressions of caspase3, caspase-9, Bcl-2 and Bax were determined by western blot assay. Result: BBD was significant and applicable to PSDP extraction. Based on the contour plots, response surface plots and variance analysis, it predicted that the optimum conditions for PSDP extraction were: 1.58 h (extraction time); 30.18 mL/g (ratio of water to raw material); and 2.02 (number of extractions). PSDP had significant inhibitory effect on the growth of A549 cells in a concentration- and timedependent manner (p < 0.05). After treatment with PSDP, caspase-3, caspase-9 and Bax were significantly up-regulated (p < 0.05), whereas Bcl-2 was down-regulated, all concentration-dependently. Conclusion: RSM analysis is an appropriate method to optimize PSDP extraction. The results also indicate that PSDP has significant anti-tumor effect against A549 cells, most likely via inducing mitochondria-mediated apoptosis.
Resumo:
Purpose: To investigate the effect of Allium sativum (garlic) methanol extract on viability and apoptosis of human leukemic cells. Methods: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at concentrations of 3.125, 6.25, 12.5, 25, 50, 100, 200, 400 and 800 ug/mL of Allium sativum extract following 48-h treatment on U-937, Jurkat Clone E6-1 and K-562 cell lines. The mode of cell death was determined by Annexin V-FITC staining and analyzed by flow cytometry. Results: The results show that the half-maximal inhibitory concentration (IC50) of A. sativum on U-937, Jurkat Clone E6-1, K-562 cell lines was 105 ± 2.21, 489 ± 4.51 and 455 ± 3.13 μg/mL, respectively, compared with negative control, while apoptosis was 17.93 ± 0.95 % for U-937 cells (p ≤ 0.05), 38.37 ± 1.88 % for Jurkat Clone E6-1 cells (p ≤ 0.001) and 16.37 ± 1.10 % for K-562 cells. A majority of the cells were inhibited by the extract via apoptosis. Only U-937 cells (6.87 ± 0.65 %) showed significant necrosis compared to negative control (p ≤ 0.05). Conclusion: K-562 cells are the most resistant against garlic extract, in contrast to Jurkat Clone E6-1 cells. Garlic extract does not induce necrosis in Jurkat Clone E6-1 and K-562 cells.
Resumo:
Purpose: To evaluate the effect of triptolide on the induction of cell apoptosis in human gastric cancer BGC-823 cells. Methods: The cytotoxicity of triptolide was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay. The effect of triptolide on cell proliferation was measured using lactate dehydrogenase (LDH) assay. Cell apoptosis was determined by Annexin V/propidium iodide (PI) double-staining assay. Results: MTT results indicate that triptolide significantly decreased cancer cell numbers in dose- and time-dependent manners in MTT assay. Data from LDH assay showed that triptolide markedly induced cytotoxicity in gastric cancer cells. Triptolide also remarkably induced both early and late apoptotic process in BGC-823 cells. In addition, the compound down-regulated the expression of anti-apoptotic Bcell lymphoma-2 (bcl-2) and up-regulated the expression of pro-apoptotic BCL-2-associated X (bax) in a dose-dependent manner. Furthermore, the pro-apoptotic activity of triptolide was involved in the activation of caspase-3 pathway in BGC-823 cells. Conclusion: Taken together, the findings strongly indicates that the pro-apoptotic activity of triptolide is regulated by caspase 3-dependent cascade pathway, and thus needs to be further developed for cancer therapy.