10 resultados para Antifungal iridoids

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salvia is a plant genus widely used in folk medicine in the Mediterranean area since antiquity. A large number of Salvia essential oils have been reported against diverse microorganisms. In the current study, chemical composition of essential oils from leaves and flowers of Salvia algeriensis (Desf.) was determined using gas chromatography-electron impact mass spectrometry (GC-EIMS) as well as their antifungal activity against phytopathogenic fungi Alternaria solani and Fusarium oxysporum exploring disk method. The GC-EIMS analysis identified 59 compounds (84.8%) in the essential oil obtained from leaves of S. algeriensis. Its major constituents were benzaldehyde (9.7%), eugenol (8.7%) and phenylethyl alcohol (8.4%). In flowers oil, 34 compounds (92.8%) were detected. The main ones were viridiflorol (71.1%) and globulol (8.6%). The essential oil obtained from leaves exhibited the highest antifungal activity, where the effective dose inhibiting 50% of mycelial fungal (ED50) against A. solani was 0.90 μL mL-1 with minimum inhibitory concentration (MIC) equal to 2 μL mL-1, whereas the ED50 and MIC in F. oxysporum culture was 1.84 μL mL-1 and 3 μL mL-1 respectively. The mycelial inhibition by flowers oil varies from 1.77 μL mL-1 (ED50) with A. solani culture (MIC 6.5 μL mL-1) to the lowest effect recorded (ED50 3.00 μL mL-1 and MIC 9.33 μL mL-1) against F. oxysporum. To our best knowledge, this is the first report on S. algeriensis, their leaves oil can constitute an alternative biocontrol against phytopathogenic fungi commonly controlled by chemical fungicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cercospora leaf spot, caused by Cercospora abelmoschi Ellis and Everhart, is quite common in okra culture. Therefore, this study aimed to evaluate the efficiency of aqueous extracts of neem ( Azadirachta indica A. Juss), citronella ( Cymbopogon nardus (L.) Rendle), eucalyptus ( Eucalyptus grandis L.), ecolife®, A. indica oil and fungicide cercobin 700 PM® in control of cercospora leaf spot on okra in greenhouse. The extracts and neem oil were tested in concentration 10%, the fungicide cercobin 700PM® in dose 2.5 g.l-1, applied 10 days after pathogen inoculation by leaf spray and the citric biomass extract ecolife® in concentration 5.0 ml.l-1, applied 10 days before pathogen inoculation. All treatments, except ecolife®, were effective in controlling cercospora leaf spot and may be recommended as alternatives in agroecological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilmgrowing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 μg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 μg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 μg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14 Candida albicans , six Candida duobushaemulonii, four Candida glabrata , and two Candida tropicalis . Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 μg/mL), two C. glabrata isolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To synthesize silver nanoparticles (AgNPs) of Arbutus andrachne leaf water extract (LE) and to evaluate the antimicrobial activity of both LE and AgNPs. Methods: The synthesized AgNPs were characterized using the following techniques: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and analysis of particle size (PS) and zeta potential (ZP). The antimicrobial activities of LE and NPs were assessed by Kirby-Bauer disc diffusion (DD) and broth microdilution (MD) methods according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI). LE and AgNPs were examined against fresh cultures of four Gram-positive and five Gram-negative bacteria, and three yeast strains. Results: AgNPs were successfully synthesized and characterized using Arbutus andrachne LE. The AgNPs showed moderate antibacterial activity against Staphylococcus aureus ATCC 6538p, S. epidermidis ATCC 12228, Escherichia coli ATCC 29998, Klebsiella pnemoniae ATCC 13883 and Pseudomonas aeruginosa ATCC 27853, and also antifungal activity against Candida albicans ATCC 10239 and C. krusei ATCC 6258. Conclusions: Due to the potent activity of AgNPs against Gram-positive and Gram-negative bacteria, and yeast strains, it is suggested that AgNPs are potential broad spectrum antimicrobial agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To characterise the phytochemical profile of whole plants of Centaurea balsamita, C. depressa and C. lycopifolia with LC-ESI-MS/MS, and as well as their antioxidant, anticholinesterase and antimicrobial activities. Methods: Organic and aqueous extracts of the three Centaurea species were evaluated for DPPH free radical, ABTS cation radical scavenging and cupric reducing antioxidant capacity (CUPRAC). Acetyland butyryl-cholinesterase enzyme inhibition abilities of the extracts using petroleum ether, acetone, methanol and water were studied to determine anticholinesterase activity, while antimicrobial activity was determined by disc diffusion method using appropriate antimicrobial standards and organisms. The phytochemical components of the methanol extracts were assessed by LC-MS/MS. Results: The methanol extract of C. balsamita exhibited much higher DPPH free and ABTS cation radicals scavenging activities (with IC50 of 62.65 ± 0.97 and 24.21 ± 0.70 mg/ml, respectively) than the other extracts. The petroleum ether extracts of the plant species exhibited moderate inhibitory activity against butyrylcholinesterase enzymes while the acetone extract of C. balsamita showed good antifungal activity against Candida albicans. Quinic acid (17513 ± 813 μg/g, 63874 ± 3066 μg/g and 108234 ± 5195 μg/g) was the major compound found in the methanol extracts of C. balsamita, C. depressa and C. Lycopifolia, respectively. Conclusion: These results indicate quinic acid is the major compound in the three plant species and that Centaurea balsamita has significant antioxidant, anticholinesterase and antimicrobial properties. Further studies to identify the compounds in the extracts responsible for the activities are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To prepare and evaluate some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6- chlorosubstitutedphenyl pyrimidines as antimicrobial agents. Methods: Some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines were prepared by reacting 2-amino-4-(7-H/substitutedcoumarin-3-yl)-6- (chlorosubstitutedphenyl) pyrimidines with piperidine and formaldehyde. The chemical structures of the synthesized compounds were elucidated by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), mass spectrometry and elemental analysis. These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds (1a-18a) were synthesized. Compound 6a (MIC = 50 μg/mL; p < 0.05 or less) displayed the highest activity against S. aureus , E. faecalis , Staphylococcus epidermidis , B. subtilis , and B. cereus . Compound 6a further showed good activity (MIC = 25 μg/mL; p < 0.05 or less) against E. coli ; P. aeruginosa K. pneumonia , B. bronchiseptica , and P. vulgaris . Compounds 6a (MIC = 25 μg/mL; p < 0.0001) and 17a (MIC = 25 μg/mL; p < 0.0001) displayed very good activity against C. albicans , A. niger , A. flavus , M. purpureous , and P. citrinum , respectively. Analysis of structure-activity relationship revealed that the presence of bromo group at 7-postion of the coumarin moiety along with the 4-chlorophenyl group at position-6 of the pyrimidine ring is critical for antimicrobial activity against Gram-positive bacteria, Gram negative bacteria and fungi. Conclusion: The synthesized 2-piperidino derivatives are better antifungal and antibacterial agents than the earlier reported 2-morpholino derivatives, but require further investigations against other microbial strains to ascertain their broad spectrum antimicrobial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants belonging to Berberis are reported in several folklore medicinal pharmacopeias and are used in traditional medicines in Asia and European countries. The plants have been used in the preparation of various traditional and synthetic medicines since pre-historic times for wound healing, fever, eye disease, jaundice, vomiting during pregnancy, rheumatism, kidney and gall balder stones, and several other illnesses. Their healing properties are appear to be due to the presence of secondary metabolites and important alkaloids with different pharmacological activities. Their antibacterial, antifungal, antiviral, anti-diabetic, and anti-tumor activities as well as positive effects on the cardiovascular and body immune systems have been reported. Root extracts of some species of the plant genus contain quinine which acts as a powerful anti-malarial agent. The main chemical constituents of Berberis plants are alkaloids, steroids, glycosides, flavonoids, saponins, terpenoids and reducing sugars. Of these alkaloids, berberine is the most important. The present review focuses on recent advances in phytopharmacological and ethnomedicinal uses of plants belonging to Berberis genus.