6 resultados para visual perception
em Digital Commons at Florida International University
Resumo:
To perform daily flight tasks, insects rely heavily on their visual perception of a dynamic environment. They must process visual signals quickly and accurately and update their behavior. Flies are vulnerable to environmental disturbances, such as gusts of wind blowing them off course, but they may use the altered visual field to compensate and regain their original course. In studies using Drosophila melanogaster, it has been shown that their corrective responses can be analyzed by measuring changes in their wing beats. By enclosing a tethered fly in a cuboidal visual arena displaying a computerized optic flow field, it is possible to calculate the change in wing beat amplitudes from an infrared shadow of its wings using photodiodes and a custom wing beat analyzer. In this experiment, manipulations ofthe optic flow field are used to create a field where points have varying relative forward speed, to study how the insect performs corrective maneuvers. The results show that Drosophila have a stronger corrective response to the quickly moving, apparently near points compared to the slower moving, apparently distant points. This implies the flies are distinguishing points based on their relative speeds, inferring distance, and adjusting their corrective actions with this information.
Resumo:
This study compared the effects of sexist labeling on the perceptions of visual artists by the community college and university students and determined their sex role orientation. The 370 students were shown five slides of an artist's works and were given six versions of an artist's biography. It contained embedded sexual labeling (woman, girl, person/ she, man, guy, person/he). The Artist Evaluation Questionnaire was administered to the female and male community college and university students that required the students to evaluate the female and male artists on several aspects of affective and cognitive measures. The questionnaire consisted of 9 items that had to be rated by the participants. In addition, the students filled out the Demographic Questionnaire and the BEM Sex Role Inventory, titled the Attitude Questionnaire. The Analysis of Variance testing procedures were administered to analyze the responses. The results disclosed gender differences in students' ratings. The female artist's work, when the artist was referred to by the neutral sexual label, "person", received significantly higher ratings from the female students. The male students gave the female artist her highest ratings when she was referred to by the low status sexual label, "girl". Both sexes did not express statistically significant preferences for any of the male sexual labels. Gender difference became apparent when it was found that female students rated both sexes equally, and their ratings were lower than those of the male students. The male students rated the female artist's work higher than the work of the male artist. The analysis of the sex role inventory questionnaire revealed the absence of the feminine (expressive) and masculine (instrumental) personalities among the students. The personalities of almost all the students were androgynous, with a few within the range of the near feminine, and a few within the range of the near masculine. The study reveals that there are differences in perception of sexual labels among the community college and university students.
Resumo:
Electronic Perception Technology (EPT) enables automated equipment to gain artificial sight commonly referred to as "machine-vision” by employing specialty software and embedded sensors to create a “Visual" input field that can be used as a front-end application for transactional behavior. The authors review this new technology and present feasible future applications to the food service industry in enhancing guest services while providing a competitive advantage.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.