3 resultados para marker gene

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gonadal development is an ideal model to study organogenesis because a variety of developmental processes can be studied during the differentiation of the bipotential primordium into testis or ovary. To better understand this process, Representational Difference Analysis of cDNA was used to identify genes that are differentially expressed in mouse gonads at 13.5 days post-coitus. The analysis led to the identification of three testis specific genes and a sequence that was only expressed in the ovary. The male genes identified: renin, Col9a3, and a novel gene termed tescalcin had patterns of expression that suggested a role in testis determination. ^ Studies of the tescalcin gene revealed that it is organized into eight exons and seven introns. The gene was located at 64 cM in mouse chromosome 5, where it spans approximately 35 Kb. Three mRNA variants resulting from alternative splicing of intron 5 were identified in mouse tissues. Gel mobility shift assays demonstrated that Sp1 and Sp3 from Y-1, msc-1, and MIN-6 cells nuclear extracts bind the GC-boxes within the tescalcin proximal promoter. Bisulfite sequencing analysis of tescalcin CpG island revealed that it is differentially methylated in male and female mouse embryonic gonads, and that hypermethylation of this region represses expression of tescalcin in the β-TC3 cell line. ^ The major tescalcin mRNA encodes a protein with 214 amino acids that contains a consensus EF-hand Ca2+-binding domain and an N-myristoylation motif. The amino acid sequence of tescalcin is highly conserved among various species, and it showed the highest homology with calcineurin B homologous proteins 1 and 2, and calcineurin B. Western blot analysis using antibodies generated against the tescalcin protein confirmed its presence in specific mouse tissues and cell lines. Immunohistochemical analysis of mouse embryos confirmed the pattern of expression of tescalcin mRNA in fetal testis. Using pull-down assays, glyceraidehydes-3-phosphate dehydrogenase was identified as an interacting and potential functional partner of tescalcin. ^ The identification and characterization of tescalcin as a novel embryonic testicular marker will contribute to the elucidation of the genetic pathways involved in testis development and likely to the understanding of pathological conditions such as sex reversal and infertility. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene-based tests of association are frequently applied to common SNPs (MAF>5%) as an alternative to single-marker tests. In this analysis we conduct a variety of simulation studies applied to five popular gene-based tests investigating general trends related to their performance in realistic situations. In particular, we focus on the impact of non-causal SNPs and a variety of LD structures on the behavior of these tests. Ultimately, we find that non-causal SNPs can significantly impact the power of all gene-based tests. On average, we find that the “noise” from 6–12 non-causal SNPs will cancel out the “signal” of one causal SNP across five popular gene-based tests. Furthermore, we find complex and differing behavior of the methods in the presence of LD within and between non-causal and causal SNPs. Ultimately, better approaches for a priori prioritization of potentially causal SNPs (e.g., predicting functionality of non-synonymous SNPs), application of these methods to sequenced or fully imputed datasets, and limited use of window-based methods for assigning inter-genic SNPs to genes will improve power. However, significant power loss from non-causal SNPs may remain unless alternative statistical approaches robust to the inclusion of non-causal SNPs are developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humoral and cells surface molecules of the mammalian immune system, grouped into the Immunoglobulin Gene Superfamily, share protein structure and gene sequence homologies with molecules found among diverse phylogenetic groups. In histocompatibility studies, the gorgonian coral Swiftia exserta has recently demonstrated specific alloimmunity with memory (Salter-Cid and Bigger, 1991. Biological Bulletin Vol 181). In an attempt to shed light on the origins of this gene family and the evolution of the vertebrate immune response, genomic DNA from Swiftia exserta was isolated, purified, and analyzed by Southern blot hybridization with mouse gene probes corresponding to two molecules of the Immunoglobulin Gene Superfamily, the Thy-1 antigen, and the alpha-3 domain of the MHC Class I histocompatibility marker. Hybridizations were conducted under low to non-stringent conditions to allow binding of mismatched homologs that may exist between the mouse gene probes and the Swiftia DNA. Removal of non-specific binding (sequences less than 70% homologous) occurred in washing steps. Results show that with the probes selected, the method chosen, and the conditions applied, no evidence of sequences of 70% or greater homology to the mouse Thy-1 or MHC Class I alpha-3 genes exist in Swiftia exserta genome.