Assessing Methods for Assigning SNPs to Genes in Gene-Based Tests of Association Using Common Variants
Data(s) |
31/05/2013
|
---|---|
Resumo |
Gene-based tests of association are frequently applied to common SNPs (MAF>5%) as an alternative to single-marker tests. In this analysis we conduct a variety of simulation studies applied to five popular gene-based tests investigating general trends related to their performance in realistic situations. In particular, we focus on the impact of non-causal SNPs and a variety of LD structures on the behavior of these tests. Ultimately, we find that non-causal SNPs can significantly impact the power of all gene-based tests. On average, we find that the “noise” from 6–12 non-causal SNPs will cancel out the “signal” of one causal SNP across five popular gene-based tests. Furthermore, we find complex and differing behavior of the methods in the presence of LD within and between non-causal and causal SNPs. Ultimately, better approaches for a priori prioritization of potentially causal SNPs (e.g., predicting functionality of non-synonymous SNPs), application of these methods to sequenced or fully imputed datasets, and limited use of window-based methods for assigning inter-genic SNPs to genes will improve power. However, significant power loss from non-causal SNPs may remain unless alternative statistical approaches robust to the inclusion of non-causal SNPs are developed. |
Formato |
application/pdf |
Identificador |
https://digitalcommons.fiu.edu/biostatistics_fac/1 https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1000&context=biostatistics_fac |
Publicador |
FIU Digital Commons |
Direitos |
by http://creativecommons.org/licenses/by/2.0/ |
Fonte |
Department of Biostatistics Faculty Publications |
Palavras-Chave | #Genetic Phenomena #Genetic Processes #Genetic Structures |
Tipo |
text |