14 resultados para decision support systems, GIS, interpolation, multiple regression

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electronic database support system for strategic planning activities can be built by providing conceptual and system specific information. The design and development of this type of system center around the information needs of strategy planners. Data that supply information on the organization's internal and external environments must be originated, evaluated, collected, organized, managed, and analyzed. Strategy planners may use the resulting information to improve their decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beginning teachers in the field of English Language Arts and Reading are responsible for providing literacy instruction to students. Teachers need a broad background in teaching reading, writing, listening, speaking, and viewing, as well as critical thinking. In secondary schools in particular, beginning English Language Arts and Reading teachers are also faced with the challenge of preparing students to be proficient enough readers and writers to meet required State standards. Beginning teachers must navigate compelling challenges that exist during the first years of teaching. The school support systems available to new teachers are an integral part of their educational development. ^ This qualitative study was conceptualized as an in-depth examination of the experiences and perceptions of eight beginning teachers. They represented different racial/ethnic groups, attended different teacher preparation programs, and taught in different school cultures. The data were collected through formal and informal interviews and classroom observations. A qualitative system of data analysis was used to examine the patterns relating to the interrelationship between teacher preparation programs and school support systems. ^ The experiences of the beginning teachers in this study indicated that teacher education programs should provide preservice teachers with a critical knowledge base for teaching literature, language, and composition. A liberal arts background in English, followed by an extensive program focusing on pedagogy, seems to provide a thorough level of curriculum and instructional practices needed for teaching in 21st century classrooms. The data further suggested that a school support system should pair beginning teachers with mentor teachers and provide a caring, professional environment that seeks to nurture the teacher as she/he develops during the first years of teaching. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the consequences of Electronic Data Interchange (EDI) use on interorganizational relations (IR) in the retail industry. EDI is a type of interorganizational information system that facilitates the exchange of business documents in structured, machine processable form. The research model links EDI use and three IR dimensions--structural, behavioral, and outcome. Based on relevant literature from organizational theory and marketing channels, fourteen hypotheses were proposed for the relationships among EDI use and the three IR dimensions.^ Data were collected through self-administered questionnaires from key informants in 97 retail companies (19% response rate). The hypotheses were tested using multiple regression analysis. The analysis supports the following hypothesis: (a) EDI use is positively related to information intensity and formalization, (b) formalization is positively related to cooperation, (c) information intensity is positively related to cooperation, (d) conflict is negatively related to performance and satisfaction, (e) cooperation is positively related to performance, and (f) performance is positively related to satisfaction. The results support the general premise of the model that the relationship between EDI use and satisfaction among channel members has to be viewed within an interorganizational context.^ Research on EDI is still in a nascent stage. By identifying and testing relevant interorganizational variables, this study offers insights for practitioners managing boundary-spanning activities in organizations using or planning to use EDI. Further, the thesis provides avenues for future research aimed at understanding the consequences of this interorganizational information technology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops and validates the framework of a specialized maintenance decision support system for a discrete part manufacturing facility. Its construction utilizes a modular approach based on the fundamental philosophy of Reliability Centered Maintenance (RCM). The proposed architecture uniquely integrates System Decomposition, System Evaluation, Failure Analysis, Logic Tree Analysis, and Maintenance Planning modules. It presents an ideal solution to the unique maintenance inadequacies of modern discrete part manufacturing systems. Well established techniques are incorporated as building blocks of the system's modules. These include Failure Mode Effect and Criticality Analysis (FMECA), Logic Tree Analysis (LTA), Theory of Constraints (TOC), and an Expert System (ES). A Maintenance Information System (MIS) performs the system's support functions. Validation was performed by field testing of the system at a Miami based manufacturing facility. Such a maintenance support system potentially reduces downtime losses and contributes to higher product quality output. Ultimately improved profitability is the final outcome. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate supervisory support as a moderator of the effects of role conflict and role ambiguity on emotional exhaustion and job satisfaction. This study also examines the moderating role of supervisory support on the relationship between emotional exhaustion and job satisfaction. Data were collected from a sample of frontline hotel employees in Northern Cyprus. The aforementioned relationships were tested based on hierarchical multiple regression analysis. The results demonstrate that supervisory support mitigates the impact of role conflict on emotional exhaustion and further reveal that supervisory support reduces the effect of emotional exhaustion on job satisfaction. There is no empirical support for the rest of the hypothesized relationships. Implications of the empirical results are discussed, and future research directions are offered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the relationship between working professionals' Career Decision-Making Self-Efficacy beliefs (CDMSE beliefs) and their reasons for participating in in-service master's level programs in Taiwan. ^ The data collection instruments used were Grotelueschen's (1985) Participation Reasons Scale (PRS), and Betz, Klein, and Taylor's (1996) Career Decision-Making Self-Efficacy-Short Form (CDMSE-SF), and a Demographic Data Form (DDF) developed specifically for this study. ^ Surveys were administered to 800 working professionals who participated in inservice master's level programs at 22 Taiwanese universities. The survey was conducted in May 2004. Data were analyzed by simple descriptive statistics, principal component factor analysis, and multiple regression. Four factors of participation reasons were found and five components of CDMSE beliefs were scored. ^ Five components of CDMSE beliefs are structured into the CDMSE-SF instrument: Self-Appraisal, Occupational Information, Goal-Selection, Planning, and Problem Solving. The reasons for participation found in this study were: Professional Improvement and Development, Professional Service, Personal Benefit and Job Security, and Professional Competence and Collegial Interaction. Pearson-product moment correlations revealed significant positive correlations between the five CDMSE subscales and the four factors of participation reasons. Multiple regression analysis revealed that participants' beliefs in their abilities to obtain information about occupations accounted for the preponderance of variance of scores on the Participation Reasons Scale (PRS). ^ This study concluded that professionals who believed that they were efficacious in obtaining information about occupations or professions tended to believe that the four reasons for participation represented by the factors of the PRS were important to them in making the decision to participate in continuing education. Additionally, it was noted that the reasons for participations for professionals who did not feel confident in their abilities to find such information could not be determined. ^ Recommendations are offered to assist those individuals responsible for developing recruiting programs in continuing education for professionals in Taiwan. These recommendations focus only on strategies intended to attract this target population of professionals who believe that they are efficacious in obtaining information about occupations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.