10 resultados para Variable-variable two dimensional spectroscopy (VV 2D)
em Digital Commons at Florida International University
Resumo:
This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^
Resumo:
Dissolved organic nitrogen (DON) represents the least understood part of the nitrogen cycle. Due to recent methodological developments, proteins now represent a potentially characterisable fraction of DON at the macromolecular level. We have applied polyacrylamide gel electrophoresis to characterise proteins in samples from a range of aquatic environments in the Everglades National Park, Florida, USA. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that each sample has a complex and characteristic protein distribution. Some proteins appeared to be common to more than one site, and these might derive from dominant higher plant vegetation. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) provided better resolution; however, strong background hindered interpretation. Our results suggest that the two techniques can be used in parallel as a tool for protein characterisation: SDS-PAGE to provide a sample-specific fingerprint and 2D-PAGE to focus on the characterisation of individual protein molecules.
Resumo:
A challenge facing nutrition care providers and the Chinese community is how to improve and maintain dietary adequacy (DA) and quality of life (QoL) in older Chinese Americans. Little is known about the factors contributing to DA and the relationships between DA and QoL among community-dwelling older Chinese adults in South Florida. A DA model and a QoL model were hypothesized. ^ Structured interviews with 100 Chinese Floridians, ages ≥60, provided data to test the hypothesized models, using structured equation modeling. Participants (mean age ± SD = 70.9 + 6.8 years) included 59% females, 98% foreign-born, 23% non-English speakers, and 68% residents of Florida for 20 years or more. The findings supported the study hypotheses: an excellent goodness-of-fit of the DA model (χ2/DF (7) = .286; CFI = 1.000; TLI = 1.704; NFI = .934; RMSEA < .001, 90% CI < .0001 to < .001; SRMR = .033; AIC = 30.000; and BIC = 66.472) and an excellent goodness-of-fit of the QoL model (χ2/DF (6) = .811; CFI = 1.000; TLI = 1.013; NFI = .979; RMSEA < .001, 90% CI < .001 to .116; SRMR = .0429; AIC = 34.869; and BIC = 73.946). ^ The DA model consisted of a structure of four indicators (i.e. Body Mass Index, food practices, diet satisfaction, and appetite) and one intervening variable (i.e. combining nutrient adequacy with nutritional risk). BMI was the strongest, most reliable indicator of DA with the highest predictability coefficient (.63) and the ability to differentiate between participants with different DA levels. The QoL model consisted of a two-dimensional construct with one indicator (i.e. physical function) and one intervening variable (i.e. combining loneliness with social resources, depression, social function, and mental health). Physical function had the strongest predictability coefficient (.89), while other indicators contributed to QoL indirectly. When integrating the DA model to the QoL model, DA appears to influence QoL via indirect pathways. ^ It is necessary to include a precise measure of BMI as the basis for assessing DA in this population. Important goals of dietary interventions should be improving physical function and alleviating social and emotional isolation. ^
Resumo:
Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^
Resumo:
Biometrics is afield of study which pursues the association of a person's identity with his/her physiological or behavioral characteristics.^ As one aspect of biometrics, face recognition has attracted special attention because it is a natural and noninvasive means to identify individuals. Most of the previous studies in face recognition are based on two-dimensional (2D) intensity images. Face recognition based on 2D intensity images, however, is sensitive to environment illumination and subject orientation changes, affecting the recognition results. With the development of three-dimensional (3D) scanners, 3D face recognition is being explored as an alternative to the traditional 2D methods for face recognition.^ This dissertation proposes a method in which the expression and the identity of a face are determined in an integrated fashion from 3D scans. In this framework, there is a front end expression recognition module which sorts the incoming 3D face according to the expression detected in the 3D scans. Then, scans with neutral expressions are processed by a corresponding 3D neutral face recognition module. Alternatively, if a scan displays a non-neutral expression, e.g., a smiling expression, it will be routed to an appropriate specialized recognition module for smiling face recognition.^ The expression recognition method proposed in this dissertation is innovative in that it uses information from 3D scans to perform the classification task. A smiling face recognition module was developed, based on the statistical modeling of the variance between faces with neutral expression and faces with a smiling expression.^ The proposed expression and face recognition framework was tested with a database containing 120 3D scans from 30 subjects (Half are neutral faces and half are smiling faces). It is shown that the proposed framework achieves a recognition rate 10% higher than attempting the identification with only the neutral face recognition module.^
Resumo:
Optical imaging is an emerging technology towards non-invasive breast cancer diagnostics. In recent years, portable and patient comfortable hand-held optical imagers are developed towards two-dimensional (2D) tumor detections. However, these imagers are not capable of three-dimensional (3D) tomography because they cannot register the positional information of the hand-held probe onto the imaged tissue. A hand-held optical imager has been developed in our Optical Imaging Laboratory with 3D tomography capabilities, as demonstrated from tissue phantom studies. The overall goal of my dissertation is towards the translation of our imager to the clinical setting for 3D tomographic imaging in human breast tissues. A systematic experimental approach was designed and executed as follows: (i) fast 2D imaging, (ii) coregistered imaging, and (iii) 3D tomographic imaging studies. (i) Fast 2D imaging was initially demonstrated in tissue phantoms (1% Liposyn solution) and in vitro (minced chicken breast and 1% Liposyn). A 0.45 cm3 fluorescent target at 1:0 contrast ratio was detectable up to 2.5 cm deep. Fast 2D imaging experiments performed in vivo with healthy female subjects also detected a 0.45 cm3 fluorescent target superficially placed ∼2.5 cm under the breast tissue. (ii) Coregistered imaging was automated and validated in phantoms with ∼0.19 cm error in the probe’s positional information. Coregistration also improved the target depth detection to 3.5 cm, from multi-location imaging approach. Coregistered imaging was further validated in-vivo , although the error in probe’s positional information increased to ∼0.9 cm (subject to soft tissue deformation and movement). (iii) Three-dimensional tomography studies were successfully demonstrated in vitro using 0.45 cm3 fluorescence targets. The feasibility of 3D tomography was demonstrated for the first time in breast tissues using the hand-held optical imager, wherein a 0.45 cm3 fluorescent target (superficially placed) was recovered along with artifacts. Diffuse optical imaging studies were performed in two breast cancer patients with invasive ductal carcinoma. The images showed greater absorption at the tumor cites (as observed from x-ray mammography, ultrasound, and/or MRI). In summary, my dissertation demonstrated the potential of a hand-held optical imager towards 2D breast tumor detection and 3D breast tomography, holding a promise for extensive clinical translational efforts.
Resumo:
Dissolved organic nitrogen (DON) is the least known component of the nitrogen cycle, in part as a result of the lack of adequate analytical methods for its molecular characterization. In this study proteinaceous material in DON, collected at six geomorphologically different sites in the Florida coastal Everglades, was characterized by amino acid analysis and protein gel electrophoresis. The amino acid composition of the samples suggests that the canal DON was more degraded and subject to higher microbial inputs than the mangrove marshwater and marine end-member stations. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) results supported this observation as distinctly different protein profiles were obtained for the canal waters compared to samples collected at other stations. These preliminary results highlight the potential of combining amino acid and intact protein analysis to fingerprint the sources of DON in different aquatic environments, and show SDS-PAGE as a potentially useful method to characterize DON.
Resumo:
Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.