19 resultados para Simulated rain
em Digital Commons at Florida International University
Resumo:
Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^
Resumo:
Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bi. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastoma- taceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.
Resumo:
The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.
Resumo:
The permanent pigmentation of the leaves of tropical rain forest herbs with anthocyanin has traditionally been viewed as a mechanism for enhancing transpiration by increased heat absorption. We report measurements to ?+0.1?0C on four Indo-mal- esian forest species polymorphic with respect to color. There were no detectable differences in temperature between cyanic and green leaves. In deeply shaded habitats, any temperature difference would arise from black-body infrared radiation which all leaves absorb and to which anthocyanins are transparent. Reflectance spectra of the lower leaf surfaces of these species re- vealed increased reflectance around 650-750 nm for cyanic leaves compared with green leaves of the same species. In all spe- cies anthocyanin was located in a single layer of cells immediately below the photosynthetic tissue. These observations provide empirical evidence that the cyanic layer can improve photosynthetic energy capture by back-scattering additional light through the photosynthetic tissue.
Resumo:
A ray tracing model has been developed to investigate the possible focusing effects of the convexly curved epidermal cell walls which characterize a number of shade-adapted plants. The model indicates that such focusing occurs, resulting in higher photosynthetic photon flux densities at certain locations within the leaf. It is postulated that there will be a corresponding increase in the rate of photosynthesis. In addition, leaf reflectance measurements indicate that this is generally less for the shade plants compared with sun species and would be advantageous in increasing the efficiency of energy capture. Either effect is important for plants which must survive at extremely low light levels.
Resumo:
Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^
Resumo:
The importance of resource supply and herbivory in driving competitive interactions among species has been an important but contentious issue within ecology. These variables exhibit different effects on species competition when manipulated in isolation but interact when manipulated together. I tested the direct and interactive effects of nutrient addition and simulated grazing (clipping) on the competitive performance of primary producers and community structure of a seagrass bed in South Florida. One square meter experimental plots were established in a mixed seagrass meadow from August 2007 to July 2009. The experiment was a 3 x 3 factorial experiment: 3 fertility treatments: control, medium (2.4 mg N d−1 and 80 µg P day −1) and high (4.8 mg N d−1 and 160 µg P day−1) x 3 clipping intensities (0, 25% and 50 % biomass removal (G)) x 5 replicates for each treatment = 45 plots). Nutrient additions and simulated grazing were done every two months. Fertilization and simulated grazing decreased sexual reproduction in S. filiforme. Fertilization increased competitive dominance within the primary producers while simulated grazing counteracted this effect by removal of the dominant species. Fertilization ameliorated the negative impacts of simulated grazing while simulated grazing prevented competitive exclusion in the fertilized plots. Nutrient addition and simulated grazing both exerted strong control on plant performance and community structure. Neither bottom up nor top down influences was eliminated in treatments where both factors where present. The effects of fertilization on plant performance were marked under all clipping intensities indicating that the system is regulated by nutrient availability both in the presence or absence of grazers. Clipping effects were strong under both fertilized and unfertilized conditions indicating that the seagrass bed can be simultaneously under top-down control by grazers.
Resumo:
This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.
Resumo:
Rates of survival of victims of sudden cardiac arrest (SCA) using cardio pulmonary resuscitation (CPR) have shown little improvement over the past three decades. Since registered nurses (RNs) comprise the largest group of healthcare providers in U.S. hospitals, it is essential that they are competent in performing the four primary measures (compression, ventilation, medication administration, and defibrillation) of CPR in order to improve survival rates of SCA patients. The purpose of this experimental study was to test a color-coded SMOCK system on: 1) time to implement emergency patient care measures 2) technical skills performance 3) number of medical errors, and 4) team performance during simulated CPR exercises. The study sample was 260 RNs (M 40 years, SD=11.6) with work experience as an RN (M 7.25 years, SD=9.42).Nurses were allocated to a control or intervention arm consisting of 20 groups of 5-8 RNs per arm for a total of 130 RNs in each arm. Nurses in each study arm were given clinical scenarios requiring emergency CPR. Nurses in the intervention group wore different color labeled aprons (smocks) indicating their role assignment (medications, ventilation, compression, defibrillation, etc) on the code team during CPR. Findings indicated that the intervention using color-labeled smocks for pre-assigned roles had a significant effect on the time nurses started compressions (t=3.03, p=0.005), ventilations (t=2.86, p=0.004) and defibrillations (t=2.00, p=.05) when compared to the controls using the standard of care. In performing technical skills, nurses in the intervention groups performed compressions and ventilations significantly better than those in the control groups. The control groups made significantly (t=-2.61, p=0.013) more total errors (7.55 SD 1.54) than the intervention group (5.60, SD 1.90). There were no significant differences in team performance measures between the groups. Study findings indicate use of colored labeled smocks during CPR emergencies resulted in: shorter times to start emergency CPR; reduced errors; more technical skills completed successfully; and no differences in team performance.
Resumo:
Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 μg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.^
Resumo:
Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.