Biogeochemical Effects of Simulated Sea Level Rise on Carbon Loss in an Everglades Mangrove Peat Soil


Autoria(s): Chambers, Lisa G.; Davis, Stephen E.; Troxler-Gann, Tiffany; Boyer, Joseph N.; Downey-Wall, Alan; Scinto, Leonard J.
Data(s)

01/03/2014

Resumo

Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.

Identificador

https://digitalcommons.fiu.edu/fce_lter_journal_articles/291

Publicador

FIU Digital Commons

Direitos

default

Fonte

FCE LTER Journal Articles

Palavras-Chave #Soil carbon #Sea level rise #Everglades #Mangrove #Saltwater intrusion #Greenhouse gas production #Earth Sciences #Environmental Sciences
Tipo

text