4 resultados para SIMULATED BODY-FLUIDS

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure to certain bloodborne pathogens can prematurely end a person’s life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail to consistently use PPE as required by federal regulation, accrediting agencies, hospital policy, and professional association standards. The purpose of this mixed methods survey study was to (a) examine factors surgical team members perceive influence choices of wearing or not wearing PPE during operative/invasive procedures and (b) determine what would influence consistent use of PPE by surgical team members. Using an ex post facto, non-experimental design, the memberships of five professional associations whose members comprise surgical teams were invited to complete a mixed methods survey study. The primary research question for the study was: What differences (perceptual and demographic) exist between surgical team members that influence their choices of wearing or not wearing PPE during operative/invasive procedures? Four principal differences were found between surgical team members. Functional (i.e., profession or role based) differences exist between the groups. Age and experience (i.e., time in profession) differences exist among members of the groups. Finally, being a nurse anesthetist influences the use of risk assessment to determine the level of PPE to use. Four common themes emerged across all groups informing the two study purposes. Those themes were: availability, education, leadership, and performance. Subsidiary research questions examined the influence of previous accidental exposure to blood or body fluids, federal regulations, hospital policy and procedure, leaders’ attitudes, and patients’ needs on the use of PPE. Each of these was found to strongly influence surgical team members and their use of PPE during operative/invasive procedures. Implications based on the findings affect organizational policy, purchasing and distribution decisions, curriculum design and instruction, leader behavior, and finally partnership with PPE manufacturers. Surgical team members must balance their innate need to care for patients with their need to protect themselves. Results of this study will help team members, leaders, and educators achieve this balance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure to certain bloodborne pathogens can prematurely end a person’s life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail to consistently use PPE as required by federal regulation, accrediting agencies, hospital policy, and professional association standards. The purpose of this mixed methods survey study was to (a) examine factors surgical team members perceive influence choices of wearing or not wearing PPE during operative/invasive procedures and (b) determine what would influence consistent use of PPE by surgical team members. Using an ex post facto, non-experimental design, the memberships of five professional associations whose members comprise surgical teams were invited to complete a mixed methods survey study. The primary research question for the study was: What differences (perceptual and demographic) exist between surgical team members that influence their choices of wearing or not wearing PPE during operative/invasive procedures? Four principal differences were found between surgical team members. Functional (i.e., profession or role based) differences exist between the groups. Age and experience (i.e., time in profession) differences exist among members of the groups. Finally, being a nurse anesthetist influences the use of risk assessment to determine the level of PPE to use. Four common themes emerged across all groups informing the two study purposes. Those themes were: availability, education, leadership, and performance. Subsidiary research questions examined the influence of previous accidental exposure to blood or body fluids, federal regulations, hospital policy and procedure, leaders’ attitudes, and patients’ needs on the use of PPE. Each of these was found to strongly influence surgical team members and their use of PPE during operative/invasive procedures. Implications based on the findings affect organizational policy, purchasing and distribution decisions, curriculum design and instruction, leader behavior, and finally partnership with PPE manufacturers. Surgical team members must balance their innate need to care for patients with their need to protect themselves. Results of this study will help team members, leaders, and educators achieve this balance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.