14 resultados para Ruusuvuori, Johanna: Control in medical consultation
em Digital Commons at Florida International University
Resumo:
Self-care and health beliefs have been found to be important concepts in the management of chronic diseases such as diabetes mellitus. Poor metabolic control has been associated with a higher incidence of complications in diabetic patients. This study sought to explore any relationships among perceptions of self-care behaviors, health beliefs and metabolic control. The sample consisted of 52 outpatients with non-insulin-dependent diabetes from a large teaching medical center. Interviews were done to obtain the patients' perceptions of their self-care behaviors, and their health beliefs concerning diabetes. Results of glycosylated hemoglobin and/or serum glucose levels were obtained from the medical records. Data were analyzed using Cochran-Mantel-Haenzel statistics, and Pearson's r. Results indicated no significant relationships among perceptions of self-care behaviors, health beliefs and metabolic control. Ethnicity, education and gender were found to be significantly associated with self-care behaviors and health beliefs.
Resumo:
Press Release on the College of Medicine.
Resumo:
This study investigated the use of treatment theories and procedures for postural control training used by Occupational Therapists (OTs) when working with hemiplegic adults who have had cerebrovascular accident (CVA) or traumatic brain injury (TBI). The method of data collection was a national survey of 400 randomly selected physical disability OTs with 127 usable surveys returned. Results showed that the most common used treatment theory was neurodevelopmental treatment (NDT), followed by motor relearning program (MRP), proprioceptive neuromuscular facilitation (PNF), Brunnstrom's approach, and the approach of Rood. The most common treatment posture used was sitting, followed by standing, mat activity, equilibrium reaction training, and walking. The factors affecting the use of various treatment theories procedures were years certified, years of clinical experience, work situation and work status. Pearson correlation coefficient analyses found significant positive relationships between treatment theories and postures. There were significant high correlations between usage of all pairs of treatment procedures. ^
Resumo:
Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas)—one of the most abundant large-bodied herbivores in Shark Bay—appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities—and possibly ecosystems—through non-consumptive pathways.
Resumo:
A number of factors influence the information processing needs of organizations, particularly with respect to the coordination and control mechanisms within a hotel. The authors use a theoretical framework to illustrate alternative mechanisms that can be used to coordinate and control hotel operations.
Resumo:
This study examined gender differences in medical advice related to diet and physical activity for obese African American adults (N = 470) with and without diabetes. Data from the 2007-2008 National Health and Nutrition Examination Survey were analyzed using logistic regression analyses. Even after sociodemographic adjustments, men were less likely to report receiving medical advice as compared with women. Both men and women given dietary and physical activity advice were more likely to follow it. Men were less likely to report currently reducing fat or calories, yet men withdiabetes were 5 times more likely to state that they were reducing fat and calories as compared with women with diabetes. Gender- and disease state-specific interventions are needed comparing standard care with enhanced patient education. Moreover, these findings necessitate studies that characterize the role of the health care professional in the diagnosis and treatment of obesity and underscore patient-provider relationships.
Resumo:
This thesis describes the development of an adaptive control algorithm for Computerized Numerical Control (CNC) machines implemented in a multi-axis motion control board based on the TMS320C31 DSP chip. The adaptive process involves two stages: Plant Modeling and Inverse Control Application. The first stage builds a non-recursive model of the CNC system (plant) using the Least-Mean-Square (LMS) algorithm. The second stage consists of the definition of a recursive structure (the controller) that implements an inverse model of the plant by using the coefficients of the model in an algorithm called Forward-Time Calculation (FTC). In this way, when the inverse controller is implemented in series with the plant, it will pre-compensate for the modification that the original plant introduces in the input signal. The performance of this solution was verified at three different levels: Software simulation, implementation in a set of isolated motor-encoder pairs and implementation in a real CNC machine. The use of the adaptive inverse controller effectively improved the step response of the system in all three levels. In the simulation, an ideal response was obtained. In the motor-encoder test, the rise time was reduced by as much as 80%, without overshoot, in some cases. Even with the larger mass of the actual CNC machine, decrease of the rise time and elimination of the overshoot were obtained in most cases. These results lead to the conclusion that the adaptive inverse controller is a viable approach to position control in CNC machinery.
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.
Resumo:
Men, particularly minorities, have higher rates of diabetes as compared with their counterparts. Ongoing diabetes self-management education and support by specialists are essential components to prevent the risk of complications such as kidney disease, cardiovascular diseases, and neurological impairments. Diabetes self-management behaviors, in particular, as diet and physical activity, have been associated with glycemic control in the literature. Recommended medical care for diabetes may differ by race/ethnicity. This study examined data from the National Health and Nutrition Examination Surveys, 2007 to 2010 for men with diabetes (N = 646) from four racial/ethnic groups: Mexican Americans, other Hispanics, non-Hispanic Blacks, and non-Hispanic Whites. Men with adequate dietary fiber intake had higher odds of glycemic control (odds ratio = 4.31, confidence interval [1.82, 10.20]), independent of race/ethnicity. There were racial/ethnic differences in reporting seeing a diabetes specialist. Non-Hispanic Blacks had the highest odds of reporting ever seeing a diabetes specialist (84.9%) followed by White non-Hispanics (74.7%), whereas Hispanics reported the lowest proportions (55.2% Mexican Americans and 62.1% other Hispanics). Men seeing a diabetes specialist had the lowest odds of glycemic control (odds ratio = 0.54, confidence interval [0.30, 0.96]). The results of this study suggest that diabetes education counseling may be selectively given to patients who are not in glycemic control. These findings indicate the need for examining referral systems and quality of diabetes care. Future studies should assess the effectiveness of patient-centered medical care provided by a diabetes specialist with consideration of sociodemographics, in particular, race/ethnicity and gender.