8 resultados para Rational Polynomial Coefficient Model

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Policy/program implementation, e.g., the process of fulfilling policy/program directives, is fundamentally tied to change. Implementation studies have examined the process, identifying many critical organizational variables although individuals perform the activities.^ Many of the studies are predicated on the rational, goal oriented model of organizations and examine implementation, presenting only the goal-oriented view. Organizational change and its resistance, however, are not fully explained by the rational model of organizations. There are other schools of thought providing different views of organizations from which explanation may emerge. Bolman and Deal (1984, 1991a, 1994) provide a different perspective for examining organizations Bolman and Deal argue organizations should be viewed through four different frames or lenses. Framing and reframing organizational action captures the complexity of action and provides better understanding of organizational processes. Understanding of implementation of policies/programs also will benefit from the use of the four-frame approach.^ The goal of this research is to provide a better understanding of the implementation process by examining individual attitudes toward change, the dependent variable of this research, and studying the relationship between the dependent variable and frame. The research was conducted in two phases. In Phase One, a survey was sent to 306 school administrators and teachers in magnet programs in Dade County, Florida. The survey instrument was composed of 55 questions including six from Bolman and Deal's Leadership Orientation Survey (1988) and 38 questions about organizational change. In Phase Two, more in-depth analysis of four school was conducted, to further explore the relationship between frame and attitude toward change.^ The results revealed that frame was a factor in explaining differences in personal Attitude Toward Change and Comfort Level with Change. Individuals using the symbolic frame had more positive attitudes toward change and were also more comfortable with change. The results of Phase Two of the research partially supported this finding in that the most fully implemented program was the product of an administrator who had chosen the symbolic frame. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated surface-subsurface hydrological model of Everglades National Park (ENP) was developed using MIKE SHE and MIKE 11 modeling software. The model has a resolution of 400 meters, covers approximately 1050 square miles of ENP, includes 110 miles of drainage canals with a variety of hydraulic structures, and processes hydrological information, such as evapotranspiration, precipitation, groundwater levels, canal discharges and levels, and operational schedules. Calibration was based on time series and probability of exceedance for water levels and discharges in the years 1987 through 1997. Model verification was then completed for the period of 1998 through 2005. Parameter sensitivity in uncertainty analysis showed that the model was most sensitive to the hydraulic conductivity of the regional Surficial Aquifer System, the Manning's roughness coefficient, and the leakage coefficient, which defines the canal-subsurface interaction. The model offers an enhanced predictive capability, compared to other models currently available, to simulate the flow regime in ENP and to forecast the impact of topography, water flows, and modifying operation schedules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to gain a better understanding of the foreign direct investment location decision making process through the examination of non-Western investors and their investment strategies in non-traditional markets. This was accomplished through in-depth personal interviews with 50 Overseas Chinese business owners and executives in several different industries from Hong Kong, Singapore, Taiwan, Malaysia, and Thailand about 97 separate investment projects in Southeast and East Asia, including The Philippines, Malaysia, Hong Kong, Singapore, Vietnam, India, Pakistan, South Korea, Australia, Indonesia, Cambodia, Thailand, Burma, Taiwan, and Mainland China.^ Traditional factors utilized in Western models of the foreign direct investment decision making process are reviewed, as well as literature on Asian management systems and the current state of business practices in emerging countries of Southeast and East Asia. Because of the lack of institutionalization in these markets and the strong influences of Confucian and patriarchal value systems on the Overseas Chinese, it was suspected that while some aspects of Western rational economic models of foreign direct investment are utilized, these models are insufficient in this context, and thus are not fully generalizable to the unique conditions of the Overseas Chinese business network in the region without further modification.^ Thus, other factors based on a Confucian value system need to be integrated into these models. Results from the analysis of structured interviews suggest Overseas Chinese businesses rely more heavily on their network and traditional Confucian values than rational economic factors when making their foreign direct investment location decisions in emerging countries in Asia. This effect is moderated by the firm's industry and the age of the firm's owners. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.