10 resultados para Potential Distribution

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106 μg/gdw in periphyton, 278 μg/gdw in floc, and 46 μg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lepisosteus osseus (Longnose Gar) is a large-bodied predator, whose Florida distribution remains unclear at the southern edge of its range. We reviewed available literature and museum voucher specimens to provide a more accurate range description, and we discuss recent collections in south Florida. Longnose Gar has not been previously reported in natural habitats south of Lake Okeechobee. Instead, records south of the lake are from canals, and most are recent (since 2000), including our own southernmost 2011 record. No records from Everglades natural habitats have been collected. Previous studies have shown native range expansions in anthropogenically disturbed landscapes. We suggest that the Longnose Gar is expanding its range southward in Florida using canals as dispersal vectors and/or suitable habitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of organic matter (OM) sources in sediments and soils is a key to better understand the biogeochemical cycling of carbon in aquatic environments. While traditional molecular marker-based methods have provided such information for typical two end member (allochthonous/terrestrial vs. autochthonous/microbial)-dominated systems, more detailed, biomass-specific assessments are needed for ecosystems with complex OM inputs such as tropical and sub-tropical wetlands and estuaries where aquatic macrophytes and macroalgae may play an important role as OM sources. The aim of this study was to assess the utility of a combined approach using compound specific stable carbon isotope analysis and an n-alkane based proxy (Paq) to differentiate submerged and emergent/terrestrial vegetation OM inputs to soils/sediments from a sub-tropical wetland and estuarine system, the Florida Coastal Everglades. Results show that Paq values (0.13–0.51) for the emergent/terrestrial plants were generally lower than those for freshwater/marine submerged vegetation (0.45–1.00) and that compound specific δ13C values for the n-alkanes (C23 to C31) were distinctively different for terrestrial/emergent and freshwater/marine submerged plants. While crossplots of the Paq and n-alkane stable isotope values for the C23n-alkane suggest that OM inputs are controlled by vegetation changes along the freshwater to marine transect, further resolution regarding OM input changes along this landscape was obtained through principal component analysis (PCA), successfully grouping the study sites according to the OM source strengths. The data show the potential for this n-alkane based multi-proxy approach as a means of assessing OM inputs to complex ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the factors that influence the distribution and abundance of predators, including sharks, is important for predicting the impacts of human changes to the environment. Such studies are particularly important in Florida Bay, USA where there are planned large-scale changes to patterns of freshwater input from the Everglades ecosystem. Studies of many marine predators suggest that links between predator and prey habitat use may vary with spatial scale, but there have been few studies of the role of prey distribution in shaping habitat use and abundance of sharks. We used longline catches of sharks and trawls for potential teleost prey to determine the influence of teleost abundance on shark abundance at the scale of regions and habitats in Florida Bay. We found that shark catch per unit effort (CPUE) was not linked to CPUE ofteleosts at the scale of sampling sites, but shark CPUE was positively correlated with the mean CPUE for teleosts within a region. Although there does not appear to be a strong match between the abundance of teleosts and sharks at small spatial scales, regional shark abundance is likely driven, at least partially, by the availability of prey. Management strategies that influence teleost abundance will have cascading effects to higher trophic levels in Florida Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2  = 0.97, r jackknife 2  = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2  = 0.75, r jackknife 2  = 0.46), WTP (r apparent 2  = 0.75, r jackknife 2  = 0.49), and WTOC (r apparent 2  = 0.79, r jackknife 2  = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. ^ The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can't be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications.^ Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. ^ Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.