6 resultados para Minimal quantity of lubricant (MQL)
em Digital Commons at Florida International University
Resumo:
Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. ^ This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. ^ Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded. ^
Resumo:
A pilot study posits that conducting a number of literacy workshops with teenage mothers translated into a greater number of appropriate booksharing skills implemented while reading to the child. The results of one- and two-way ANOVAs and of a contingency table with crosstabs are included.
Resumo:
This flyer promotes the event "A Minimal History of the Cuban Revolution (Historia mínima de Ia Revolución Cubana), Book Presentation by Author Rafael Rojas", part at the SIPA at Books & Books series. This event held at Books & Books in Coral Gables.
Resumo:
Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded.
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA’s behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA's behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.