7 resultados para Fresh Pond
em Digital Commons at Florida International University
Resumo:
Understanding how decisions for international investments are made and how this affects the overall pattern of investments and firm’s performance is of particular importance both in strategy and international business research. This dissertation introduced first home-host country relatedness (HHCR) as the degree to which countries are efficiently combined within the investment portfolios of firms. It theorized and demonstrated that HHCR will vary with the motivation for investments along at least two key dimensions: the nature of foreign investments and the connectedness of potential host countries to the rest of the world. Drawing on cognitive psychology and decision-making research, it developed a theory of strategic decision making proposing that strategic solutions are chosen close to a convenient anchor. Building on research on memory imprinting, it also proposed that managers tend to rely on older knowledge representation. In the context of international investment decisions, managers use their home countries as an anchor and are more likely to choose as a site for foreign investments host countries that are ‘close’ to the home country. These decisions are also likely to rely more strongly on closeness to time invariant country factors of historic and geographic nature rather than time-variant institutions. Empirical tests using comprehensive investments data by all public multinational companies (MNC) worldwide, or over 15,000 MNCs with over half a million subsidiaries, support the claims. Finally, the dissertation introduced the concept of International Coherence (IC) defined as the degree to which an MNE’s network comprises countries that are related. It was hypothesized that maintaining a high level of coherence is important for firm performance and will enhance it. Also, the presence of international coherence mitigates some of the negative effects of unrelated product diversification. Empirical tests using data on foreign investments of over 20,000 public firms, while also developing a home-host country relatedness index for up to 24,300 home-host pairs, provided support for the theory advanced.
Resumo:
Yeast populations in the Shark River Slough of the Florida Everglades, USA, were examined during a 3-year period (2002–2005) at six locations ranging from fresh water marshes to marine mangroves. Seventy-four described species (33 ascomycetes and 41 basidiomycetes) and an approximately equal number of undescribed species were isolated during the course of the investigation. Serious human pathogens, such as Candida tropicalis, were not observed, which indicates that their presence in coastal waters is due to sources of pollution. Some of the observed species were widespread throughout the fresh water and marine habitats, whereas others appeared to be habitat restricted. Species occurrence ranged from prevalent to rare. Five representative unknown species were selected for formal description. The five species comprise two ascomycetes: Candida sharkiensis sp. nov. (CBS 11368T) and Candida rhizophoriensis sp. nov. (CBS 11402T) (Saccharomycetales, Metschnikowiaceae), and three basidiomycetes: Rhodotorula cladiensis sp. nov. (CBS 10878T) in the Sakaguchia clade (Cystobasidiomycetes), Rhodotorula evergladiensis sp. nov. (CBS 10880T) in the Rhodosporidium toruloides clade (Microbotryomycetes, Sporidiobolales) and Cryptococcus mangaliensis sp. nov. (CBS 10870T) in the Bulleromyces clade (Agaricomycotina, Tremellales).
Resumo:
Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry. Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO 2-enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.
Resumo:
Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939 µmol) in the overlying aquifer above ambient concentrations (concentration less than 30 µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.
Resumo:
Fresh food vending represents $1.5 billion in sales each year in the United States. The implications for a better understanding of fresh food vending are significant in terms of profitability and improved market share for vending operators. Of equal importance is a better understanding of the significance of the route driver on the overall fresh food vending operation. Developing a better understanding of this area of the food service industry will help vending operators increase profits and provide better product choices to consumers
Resumo:
Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.
Resumo:
Par Pond is a man-made 1120 ha cooling reservoir located on the Savannah River Site near Aiken, South Carolina. From 1972-1978 a detailed study on the status of the alligator in Par Pond was conducted by Tom Murphy (unpub. MS thesis Univ. of GA, 1977). Murphy estimated that approximately 110 alligators inhabited Par Pond with an adult (> 1.8 m) to juvenile (< 1.8 m) ratio of (1.8:1), an overall sex ratio of 3.2:1, and an average of only 2.3 nests/yr. The purpose of this study (1986-1989) was to determine the current population size and structure, determine how the population has changed in the last 15 years and to examine growth and survival of juvenile alligators. Data were collected by monthly night-time eyeshine counts aerial surveys, capturing animals, and locating and following the fate of nests. There was a strong positive correlation between water temperature and the number of alligators observed during eyeshine counts. Both eyeshine counts and aerial surveys were highest in spring and varied seasonally. A total of 184 different non-hatchling and 157 hatchling alligators were captured between May 1986 and November 1988. Population estimates and size distributions based on capture data indicate that over the last 15 years the population has increased from approximately 110 to 200 alligators, and the size distribution has shifted from one dominated by large adults to one that has a higher proportion of juveniles. The current sex ratio (2.6:1) is not significantly different from that reported by Murphy (1977, 3.2:1). However, the average number of nests/yr has increased from 2.3 to 4.0. Data on juvenile growth and survival show that the growth rate of hatchlings (32.9 cm/yr total length) is greater than that of animals age 1-3 (21.6 cm/yr total length) and survival of all ages is variable between years and between clutches. Results from this study indicate that from 1972-988 the population has increased ac an average exponential rate of 6 % per year. If conditions in Par Pond do not change, the population size should continue to increase.