11 resultados para Failure rate functions
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to correct some mistakes in the literature and derive a necessary and sufficient condition for the MRL to follow the roller-coaster pattern of the corresponding failure rate function. It was also desired to find the conditions under which the discrete failure rate function has an upside-down bathtub shape if corresponding MRL function has a bathtub shape. The study showed that if discrete MRL has a bathtub shape, then under some conditions the corresponding failure rate function has an upside-down bathtub shape. Also the study corrected some mistakes in proofs of Tang, Lu and Chew (1999) and established a necessary and sufficient condition for the MRL to follow the roller-coaster pattern of the corresponding failure rate function. Similarly, some mistakes in Gupta and Gupta (2000) are corrected, with the ensuing results being expanded and proved thoroughly to establish the relationship between the crossing points of the failure rate and associated MRL functions. The new results derived in this study will be useful to model various lifetime data that occur in environmental studies, medical research, electronics engineering, and in many other areas of science and technology.
Resumo:
A class of lifetime distributions which has received considerable attention in modelling and analysis of lifetime data is the class of lifetime distributions with bath-tub shaped failure rate functions because of their extensive applications. The purpose of this thesis was to introduce a new class of bivariate lifetime distributions with bath-tub shaped failure rates (BTFRFs). In this research, first we reviewed univariate lifetime distributions with bath-tub shaped failure rates, and several multivariate extensions of a univariate failure rate function. Then we introduced a new class of bivariate distributions with bath-tub shaped failure rates (hazard gradients). Specifically, the new class of bivariate lifetime distributions were developed using the method of Morgenstern’s method of defining bivariate class of distributions with given marginals. The computer simulations and numerical computations were used to investigate the properties of these distributions.
Resumo:
A common assumption in the restaurant industry is that restaurants fail at an exceedingly high rate. However, statistical research to support this assumption is limited. The authors present a study of 10 years in the life of three markets and offer new data for managers to consider.
Resumo:
Enterprise Resource Planning (ERP) systems are software programs designed to integrate the functional requirements, and operational information needs of a business. Pressures of competition and entry standards for participation in major manufacturing supply chains are creating greater demand for small business ERP systems. The proliferation of new offerings of ERP systems introduces complexity to the selection process to identify the right ERP business software for a small and medium-sized enterprise (SME). The selection of an ERP system is a process in which a faulty conclusion poses a significant risk of failure to SME’s. The literature reveals that there are still very high failure rates in ERP implementation, and that faulty selection processes contribute to this failure rate. However, the literature is devoid of a systematic methodology for the selection process for an ERP system by SME’s. This study provides a methodological approach to selecting the right ERP system for a small or medium-sized enterprise. The study employs Thomann’s meta-methodology for methodology development; a survey of SME’s is conducted to inform the development of the methodology, and a case study is employed to test, and revise the new methodology. The study shows that a rigorously developed, effective methodology that includes benchmarking experiences has been developed and successfully employed. It is verified that the methodology may be applied to the domain of users it was developed to serve, and that the test results are validated by expert users and stakeholders. Future research should investigate in greater detail the application of meta-methodologies to supplier selection and evaluation processes for services and software; additional research into the purchasing practices of small firms is clearly needed.^
Resumo:
This dissertation studies newly founded U.S. firms' survival using three different releases of the Kauffman Firm Survey. I study firms' survival from a different perspective in each chapter. ^ The first essay studies firms' survival through an analysis of their initial state at startup and the current state of the firms as they gain maturity. The probability of survival is determined using three probit models, using both firm-specific variables and an industry scale variable to control for the environment of operation. The firm's specific variables include size, experience and leverage as a debt-to-value ratio. The results indicate that size and relevant experience are both positive predictors for the initial and current states. Debt appears to be a predictor of exit if not justified wisely by acquiring assets. As suggested previously in the literature, entering a smaller-scale industry is a positive predictor of survival from birth. Finally, a smaller-scale industry diminishes the negative effects of debt. ^ The second essay makes use of a hazard model to confirm that new service-providing (SP) firms are more likely to survive than new product providers (PPs). I investigate the possible explanations for the higher survival rate of SPs using a Cox proportional hazard model. I examine six hypotheses (variations in capital per worker, expenses per worker, owners' experience, industry wages, assets and size), none of which appear to explain why SPs are more likely than PPs to survive. Two other possibilities are discussed: tax evasion and human/social relations, but these could not be tested due to lack of data. ^ The third essay investigates women-owned firms' higher failure rates using a Cox proportional hazard on two models. I make use of a never-before used variable that proxies for owners' confidence. This variable represents the owners' self-evaluated competitive advantage. ^ The first empirical model allows me to compare women's and men's hazard rates for each variable. In the second model I successively add the variables that could potentially explain why women have a higher failure rate. Unfortunately, I am not able to fully explain the gender effect on the firms' survival. Nonetheless, the second empirical approach allows me to confirm that social and psychological differences among genders are important in explaining the higher likelihood to fail in women-owned firms.^
Resumo:
This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^
Resumo:
The purpose of this study was to examine the factorsbehind the failure rates of Associate in Arts (AA)graduates from Miami-Dade Community College (M-DCC) transferring to the Florida State University System (SUS). In M-DCC's largest disciplines, the university failure rate was 13% for Business & Management, 13% for Computer Science, and 14% for Engineering. Hypotheses tested were: Hypothesis 1 (H1): The lower division (LD) overall cumulative GPA and/or the LD major field GPA for AA graduates are predictive of the SUS GPA for the Business Management, Computer Science, and Engineering disciplines. Hypothesis 2 (H2): Demographic variables (age, race, gender) are predictive of performance at the university among M-DCC AA graduates in Engineering, Business & Management, and Computer Science. Hypothesis 3 (H3): Administrative variables (CLAST -College Level Academic Skills Test subtests) are predictive of university performance (GPA) for the Business/Management, Engineering, and Computer Science disciplines. Hypothesis 4 (H4): LD curriculum variables (course credits, course quality points) are predictive of SUS performance for the Engineering, Business/Management and Computer Science disciplines. Multiple Regression was the inferential procedureselected for predictions. Descriptive statistics weregenerated on the predictors. Results for H1 identified the LD GPA as the most significant variable in accounting for the variability of the university GPA for the Business & Management, Computer Science, and Engineering disciplines. For H2, no significant results were obtained for theage and gender variables, but the ethnic subgroups indicated significance at the .0001 level. However, differentials in GPA may not have been due directly to the race factor but, rather, to curriculum choices and performance outcomes while in the LD. The CLAST computation variable (H3) was a significant predictor of the SUS GPA. This is most likely due to the mathematics structure pervasive in these disciplines. For H4, there were two curriculum variables significant in explaining the variability of the university GPA (number of required critical major credits completed and quality of the student's performance for these credits). Descriptive statistics on the predictors indicated that 78% of those failing in the State University System had a LD major GPA (calculated with the critical required university credits earned and quality points of these credits) of less than 3.0; and 83% of those failing at the university had an overall community college GPA of less than 3.0.
Resumo:
Private nonprofit human service organizations provide a spectrum of services that aim to resolve societal problems. Their failure may leave needed and desired services unprovided or not provided sufficiently to meet public demand. However, the concept of organizational failure has not been examined for the nonprofit organization. This research addresses the deficiency in the literatures of organization failure and nonprofit organizations.^ An eight category typology, developed from a review of the current literature and findings from expert interviews, is initially presented to define nonprofit organization failure. A multiple case study design is used to test the typology in four nonprofit human service delivery agencies. The case analysis reduces the typology to five types salient to nonprofit organization failure: input failure, legitimacy failure, adaptive failure, management failure and leadership failure.^ The resulting five category typology is useful to both theory builders and nonprofit practitioners. For theory development, the interaction of the failure types extends the literature and lays a foundation for a theory of nonprofit organization failure that diffuses management and leadership across all of the failure types, highlights management and leadership failure as collective functions shared by paid staff and the volunteer board of directors, and emphasizes the importance of organization legitimacy.^ From a practical perspective, the typology provides a tool for diagnosing failure in the nonprofit organization. Using the management indicators developed for the typology, a checklist of the warning signals of potential failure, emphasizing the key types of management and leadership, offers nonprofit decision makers a priori examination of an organization's propensity for failure. ^
Resumo:
Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.
Resumo:
The hospitality industry (especially the restaurant segment) has a historically high rate of financial failures. Yet, financial failure in the industry has not received the attention it deserves. In this article, the authors identify basic reasons underlying failed ideas while presenting a study of several hospitality chains that have experienced varying degrees of financial failure. The characteristics and pitfalls of these companies provide the necessary groundwork to explore major lessons to be learned which should aid hospitality management to aviod future business failures.
Resumo:
Almost all pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds, which are essential for protein functions. In many cases, disulfidecontaining proteins are produced via in vitro protein folding that involves the oxidation of reduced protein to native protein, a complex process. The in vitro folding of reduced lysozyme has been extensively studied as a model system because native lysozyme is small, inexpensive, and has only four disulfide bonds. The folding of reduced lysozyme is conducted with the aid of a redox buffer consisting of a small molecule disulfide and a small molecule thiol, such as oxidized and reduced glutathione. Herein, in vitro folding rates and yields of lysozyme obtained in the presence of a series of aromatic thiols and oxidized glutathione are compared to those obtained with reduced and oxidized glutathione. Results showed that aromatic thiols significantly increase the folding rate of lysozyme compared to glutathione.