6 resultados para Equations of Mathematical Physics
em Digital Commons at Florida International University
Resumo:
Results from a qualitative interview study of three physics professors at a large public research university are presented. Faculty view building physics expertise as moving through stages, developing knowledge skills, and adopting the norms of the community, which is consistent with the legitimate peripheral participation model.
Resumo:
Math storybooks are picture books in which the understanding of mathematical concepts is central to the comprehension of the story. Math stories have provided useful opportunities for children to expand their skills in the language arts area and to talk about mathematical factors that are related to their real lives. The purpose of this study was to examine bilingual children's reading and math comprehension of the math storybooks. ^ The participants were randomly selected from two Korean schools and two public elementary schools in Miami, Florida. The sample consisted of 63 Hispanic American and 43 Korean American children from ages five to seven. A 2 x 3 x (2) mixed-model design with two between- and one within-subjects variable was used to conduct this study. The two between-subjects variables were ethnicity and age, and the within-subjects variable was the subject area of comprehension. Subjects were read the three math stories individually, and then they were asked questions related to reading and math comprehension. ^ The overall ANOVA using multivariate tests was conducted to evaluate the factor of subject area for age and ethnicity. As follow-up tests for a significant main effect and a significant interaction effect, pairwise comparisons and simple main effect tests were conducted, respectively. ^ The results showed that there were significant ethnicity and age differences in total comprehension scores. There were also age differences in reading and math comprehension, but no significant differences were found in reading and math by ethnicity. Korean American children had higher scores in total comprehension than those of Hispanic American children, and they showed greater changes in their comprehension skills at the younger ages, from five to six, whereas Hispanic American children showed greater changes at the older ages, from six to seven. Children at ages five and six showed higher scores in reading than in math, but no significant differences between math and reading comprehension scores were found at age seven. ^ Through schooling with integrated instruction, young bilingual children can move into higher levels of abstraction and concepts. This study highlighted bilingual children's general nature of thinking and showed how they developed reading and mathematics comprehension in an integrated process. ^
Resumo:
We present a case study on how participation of one student changed during her first semester of introductory physics class using Modeling Instruction. Using video recordings, we explore how her behavior is consistent with a change from thinking of group learning as a parallel activity to one that is collaborative.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
This study explored the differential effects of single-sex versus coed education on the cognitive and affective development of young women in senior year of high school. The basic research question was: What are the differential effects of single-sex versus coed education on the development of mathematical reasoning ability, verbal reasoning ability, or self-concept of high school girls?^ This study was composed of two parts. In the first part, the SAT verbal and mathematical ability scores were recorded for those subjects in the two schools from which the sample populations were drawn. The second part of the study required the application of the Piers-Harris Children's Self-Concept Scale to subjects in each of the two sample populations. The sample schools were deliberately selected to minimize between group differences in the populations. One was an all girls school, the other coeducational.^ The research design employed in this study was the causal-comparative method, used to explore causal relationships between variables that already exist. Based on a comprehensive analysis of the data produced by this research, no significant difference was found to exist between the mean scores of the senior girls in the single-sex school and the coed school on the SAT 1 verbal reasoning section. Nor was any significant difference found to exist between the mean scores of the senior girls in the single-sex school and the coed school on the SAT 1 mathematical reasoning section. Finally, no significant difference between the mean total scores of the senior girls in the single-sex school and the coed school on the Piers-Harris Children's Self-Concept Scale was found to exist.^ Contrary to what many other studies have found in the past about single-sex schools and their advantages for girls, this study found no support for such advantages in the cognitive areas of verbal and mathematical reasoning as measured by the SAT or in the affective area of self-concept as measured by the Piers-Harris Children's Self-Concept Scale. ^
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.