13 resultados para Engineering -- Data processing -- Study and teaching

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this phenomenological study was to understand what impact “heteronormativity” has on a lesbian teacher's perception of her instructional style, content, and context of curriculum taught. Through taped interviews with lesbian educators, this research examined the lived experience of the lesbian teacher. The framework for this study included theories related to historical, sociocultural, and psychosocial development while the methodology included a qualitative design using primary elements of a phenomenological study outlined without ignoring the influence associated with contextualism. Due to the sensitive nature of the study nine women who were the focus of this research were volunteers with the first serving as a “gatekeeper” to assist in the pilot study. The subsequent group evolved as a result of “snowballing” to gain more participants. ^ The data in the form of narrative derived from the interviews was transcribed, color-coded, and organized into four themes and associated sub-themes, based upon the perceptions of these educators. These themes characterized the coming out process of a lesbian, which directly paralleled the personal and professional development of the lesbian educator, emerged as a result of the analysis. They included: (a) self-acknowledgement; (b) self-indentification; (c) coming out to other lesbians by overcoming fear and establishing relationships; (d) coming out to others by overcoming heteronormativity by using support groups in defining a lesbian's role as a teacher. ^ The results of this study showed that the acceptance of the lesbian culture, shared with the acknowledgement, rather than compliance or defiance, of cultural hegemony can allow the lesbian educator to develop a curriculum and a classroom climate that will foster understanding and even generate social change among colleagues, parents, and students, one person at a time. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of institutional engineering has gained a renewed interest with the democratic transitions of the Central and Eastern European countries, as for some states it has become a matter of state survival. The four countries examined in the study – Macedonia, Slovakia, Romania and Bulgaria – exemplify the difficulty in establishing a stable democratic society in the context of the resurgence of national identity. The success of ethnonational minorities in achieving the desired policies affirming or expanding their rights as a group was conditioned upon the cohesion of the minority as well as the permissiveness of state institutions in terms of participation and representation of minority members. The Hungarian minorities in Slovakia and Romania, the Turkish minority in Bulgaria, and the Albanian minority in Macedonia, formed their political organizations to represent their interests. However, in some cases the divergence of strategies or goals between factions of the minority group seriously impeded its ability to obtain the desired concessions from the majority. The difficulty in the pursuit of policies favoring the expansion of minority rights was further exacerbated in some of the cases by the impermissiveness of political institutions. The political parties representing the interest of ethnonational minorities were allowed to participate in elections, although not without suspicions about their intent and even strong opposition from majority groups, but participation in elections and subsequent representation in legislative bodies did not translate into adoption of the desired policies. The ethnonational minorities' inability to effectively influence the decision-making process was the result of the inadequacy of democratic institutions to process these demands and channel them through the normal political process in the absence of majority desire to accommodate them. Despite the promise of democratic institutions to bring about a major overhaul of the policies of forceful assimilation and disregard for minority rights, the four cases analyzed in the study demonstrate that in effect ethnonational minorities continued to be at the mercy of the majority, especially if the minority was unable to position itself as a balancing actor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International travel has significant implications on the study of architecture. This study analyzed ways in which undergraduate and graduate students benefited from the experience of international travel and study abroad. Taken from the perspective of 15 individuals who were currently or had been architecture students at the University of Miami and Florida International University or who were alumni of the University of Florida and Syracuse University, the research explored how international travel and study abroad enhanced their awareness and understanding of architecture, and how it complemented their architecture curricula. This study also addressed a more personal aspect of international travel in order to learn how the experience and exposure to foreign cultures had positively influenced the personal and professional development of the participants.^ Participants’ individual and two-person semi-structured interviews about study abroad experiences were electronically recorded and transcribed for analysis. A second interview was conducted with five of the participants to obtain feedback concerning the accuracy of the transcripts and the interpretation of the data. Sketch journals and design projects were also analyzed from five participants and used as data for the purposes of better understanding what these individuals learned and experienced as part of their study abroad.^ Findings indicated that study abroad experiences helped to broaden student understanding about architecture and urban development. These experiences also opened the possibilities of creative and professional expression. For many, this was the most important aspect of their education as architects because it heightened their interest in architecture. These individuals talked about how they had the opportunity to experience contemporary and ancient buildings that they had learned about in their history and design classes on their home campuses. In terms of personal and professional development, many of the participants remarked that they became more independent and self-reliant because of their study abroad experiences. They also displayed a sense of global awareness and were interested in the cultures of their host nations. The study abroad experiences also had a lasting influence on their professional development.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few valid and reliable placement procedures are available to assess the English language proficiency of adults who enroll in English for Speakers of Other Languages (ESOL) programs. Whereas placement material exists for children and university ESOL students, the needs of students in adult community education programs have not been adequately addressed. Furthermore, the research suggests that a number of variables, such as, native language, age, prior schooling, length of residence, and employment are related to second language acquisition. Numerous studies contribute to our understanding of the relationship of these factors to second language acquisition of Spanish-speaking students. Again, there is a void in the research investigating the factors affecting second language acquisition and consequently, appropriate placement of Haitian Creole-speaking students. This study compared a standardized instrument, the NYS Place Test, used alone and in combination with a writing sample in English, to subjective judgement of a department coordinator for initial placement of Haitian adult ESOL students in a community education program. The study also investigated whether or not consideration of student profile data improved the accuracy of the test. Finally, the study sought to determine if a relationship existed between student profile data and those who withdrew from the program or did not enter a class after registering. Analysis of the data by crosstabulation and chi-square revealed that the standardized NYS Place Test was at least as accurate as subjective department coordinator placement and that one procedure could be substituted for li other. Although the writing sample in English improved accuracy of placement by the NYS test, the results were not significant. Of the profile variables, only length of residence was found to be significantly related to accuracy of placement using the NYS Place Test. The number of incorrect placements was higher for those students who lived in the host country from twenty-five to one hundred ten months. A post hoc analysis of NYS test scores according to level showed that those learners who placed in level three also had a significantly higher incidence of incorrect placements. No significant relationship was observed between the profile variables and those who withdrew from the program or registered but did not enter a class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.