8 resultados para Elastic moduli

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin β-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous microstructure and limitation of the test samples geometry. The elastic moduli of nanocomposites were computed using different micromechanics models and compared with experimentally measured values. The elastic moduli of nanocomposites measured by nanoindentation technique, increased gradually with sintering attributed to porosity removal. The experimentally measured values conformed better with theoretically predicted values, particularly in the case of Hashin-Shtrikman bound method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equisetum giganteum L., a giant horsetail, is one of the largest living members of an ancient group of non-flowering plants with a history extending back 377 million years. Its hollow upright stems grow to over 5 m in height. Equisetum giganteum occupies a wide range of habitats in southern South America. Colonies of this horsetail occupy large areas of the Atacama river valleys, including those with sufficiently high groundwater salinity to significantly reduce floristic diversity. The purpose of this research was to study the ecophysiological and biomechanical properties that allow E. giganteum to successfully colonize a range of habitats, varying in salinity and exposure. Stem ecophysiological behavior was measured via steady state porometry (stomatal conductance), thermocouple psychrometry (water potential), chlorophyll fluorescence, and ion specific electrodes (xylem fluid solutes). Stem biomechanical properties were measured via a 3-point bending apparatus and cross sectional imaging. Equisetum giganteum stems exhibit mechanical characteristics of semi-self-supporting plants, requiring mutual support or support of other vegetation when they grow tall. The mean elastic moduli (4.3 Chile, 4.0 Argentina) of E. giganteum in South America is by far the largest measured in any living horsetail. Stomatal behavior of E. giganteum is consistent with that of typical C3 vascular plants, although absolute values of maximum late morning stomatal conductance are very low in comparison to typical plants from mesic habitats. The internode stomata exhibit strong light response. However, the environmental sensitivity of stomatal conductance appeared less in young developing stems, possibly due to higher cuticular conductance. Exclusion of sodium (Na) and preferential accumulation of potassium (K) at the root level appears to be the key mechanism of salinity tolerance in E. giganteum. Overall stomatal conductance and chlorophyll fluorescence were little affected by salinity, ranging from very low levels up to half strength seawater. This suggests a high degree of salinity stress tolerance. The capacity of E. giganteum to adapt to a wide variety of environments in southern South America has allowed it to thrive despite tremendous environmental changes during their long tenure on Earth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equisetum giganteum L., a giant horsetail, is one of the largest living members of an ancient group of non-flowering plants with a history extending back 377 million years. Its hollow upright stems grow to over 5 m in height. Equisetum giganteum occupies a wide range of habitats in southern South America. Colonies of this horsetail occupy large areas of the Atacama river valleys, including those with sufficiently high groundwater salinity to significantly reduce floristic diversity. The purpose of this research was to study the ecophysiological and biomechanical properties that allow E. giganteum to successfully colonize a range of habitats, varying in salinity and exposure. Stem ecophysiological behavior was measured via steady state porometry (stomatal conductance), thermocouple psychrometry (water potential), chlorophyll fluorescence, and ion specific electrodes (xylem fluid solutes). Stem biomechanical properties were measured via a 3-point bending apparatus and cross sectional imaging. Equisetum giganteum stems exhibit mechanical characteristics of semi-self-supporting plants, requiring mutual support or support of other vegetation when they grow tall. The mean elastic moduli (4.3 Chile, 4.0 Argentina) of E. giganteum in South America is by far the largest measured in any living horsetail. Stomatal behavior of E. giganteum is consistent with that of typical C3 vascular plants, although absolute values of maximum late morning stomatal conductance are very low in comparison to typical plants from mesic habitats. The internode stomata exhibit strong light response. However, the environmental sensitivity of stomatal conductance appeared less in young developing stems, possibly due to higher cuticular conductance. Exclusion of sodium (Na) and preferential accumulation of potassium (K) at the root level appears to be the key mechanism of salinity tolerance in E. giganteum. Overall stomatal conductance and chlorophyll fluorescence were little affected by salinity, ranging from very low levels up to half strength seawater. This suggests a high degree of salinity stress tolerance. The capacity of E. giganteum to adapt to a wide variety of environments in southern South America has allowed it to thrive despite tremendous environmental changes during their long tenure on Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considered the micro-mechanical behavior of a long fiber embedded in an infinite matrix. Using the theory of elasticity, the idea of boundary layer and some simplifying assumptions, an approximate analytical solution was obtained for the normal and shear stresses along the fiber. The analytical solution to the problem was found for the case when the length of the embedded fiber is much greater than its radius, and the Young's modulus of the matrix was much less than that of the fiber. The analytical solution was then compared with a numerical solution based on Finite Element Analysis (FEA) using ANSYS. The numerical results showed the same qualitative behavior of the analytical solution, serving as a validation tool against lack of experimental results. In general this work provides a simple method to determine the thermal stresses along the fiber embedded in a matrix, which is the foundation for a better understanding of the interaction between the fiber and matrix in the case of the classical problem of thermal-stresses.