19 resultados para Direct digital detector
em Digital Commons at Florida International University
Resumo:
The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^
Resumo:
The purpose of this study was to investigate the effects of direct instruction in story grammar on the reading and writing achievement of second graders. Three aspects of story grammar (character, setting, and plot) were taught with direct instruction using the concept development technique of deep processing. Deep processing which included (a) visualization (the drawing of pictures), (b) verbalization (the writing of sentences), (c) the attachment of physical sensations, and (d) the attachment of emotions to concepts was used to help students make mental connections necessary for recall and application of character, setting, and plot when constructing meaning in reading and writing.^ Four existing classrooms consisting of seventy-seven second-grade students were randomly assigned to two treatments, experimental and comparison. Both groups were pretested and posttested for reading achievement using the Gates-MacGinitie Reading Tests. Pretest and posttest writing samples were collected and evaluated. Writing achievement was measured using (a) a primary trait scoring scale (an adapted version of the Glazer Narrative Composition Scale) and (b) an holistic scoring scale by R. J. Pritchard. ANCOVAs were performed on the posttests adjusted for the pretests to determine whether or not the methods differed. There was no significant improvement in reading after the eleven-day experimental period for either group; nor did the two groups differ. There was significant improvement in writing for the experimental group over the comparison group. Pretreatment and posttreatment interviews were selectively collected to evaluate qualitatively if the students were able to identify and manipulate elements of story grammar and to determine patterns in metacognitive processing. Interviews provided evidence that most students in the experimental group gained while most students in the comparison group did not gain in their ability to manipulate, with understanding, the concepts of character, setting, and plot. ^
Resumo:
A model was tested to examine relationships among leadership behaviors, team diversity, and team process measures with team performance and satisfaction at both the team and leader-member levels of analysis. Relationships between leadership behavior and team demographic and cognitive diversity were hypothesized to have both direct effects on organizational outcomes as well as indirect effects through team processes. Leader member differences were investigated to determine the effects of leader-member diversity leader-member exchange quality, individual effectiveness and satisfaction.^ Leadership had little direct effect on team performance, but several strong positive indirect effects through team processes. Demographic Diversity had no impact on team processes, directly impacted only one performance measure, and moderated the leadership to team process relationship.^ Cognitive Diversity had a number of direct and indirect effects on team performance, the net effects uniformly positive, and did not moderate the leadership to team process relationship.^ In sum, the team model suggests a complex combination of leadership behaviors positively impacting team processes, demographic diversity having little impact on team process or performance, cognitive diversity having a positive net impact impact, and team processes having mixed effects on team outcomes.^ At the leader-member level, leadership behaviors were a strong predictor of Leader-Member Exchange (LMX) quality. Leader-member demographic and cognitive dissimilarity were each predictors of LMX quality, but failed to moderate the leader behavior to LMX quality relationship. LMX quality was strongly and positively related to self reported effectiveness and satisfaction.^ The study makes several contributions to the literature. First, it explicitly links leadership and team diversity. Second, demographic and cognitive diversity are conceptualized as distinct and multi-faceted constructs. Third, a methodology for creating an index of categorical demographic and interval cognitive measures is provided so that diversity can be measured in a holistic conjoint fashion. Fourth, the study simultaneously investigates the impact of diversity at the team and leader-member levels of analyses. Fifth, insights into the moderating impact of different forms of team diversity on the leadership to team process relationship are provided. Sixth, this study incorporates a wide range of objective and independent measures to provide a 360$\sp\circ$ assessment of team performance. ^
Resumo:
The volatile chemicals which comprise the odor of the illicit drug cocaine have been analyzed by adsorption onto activated charcoal followed by solvent elution and GC/MS analysis. A series of field tests have been performed to determine the dominant odor compound to which dogs alert. All of our data to date indicate that the dominant odor is due to the presence of methyl benzoate which is associated with the cocaine, rather than the cocaine itself. When methyl benzoate and cocaine are spiked onto U.S. currency, the threshold level of methyl benzoate required for a canine to signal an alert is typically 1-10 $\mu$g. Humans have been shown to have a sensitivity similar to dogs for methyl benzoate but with poorer selectivity/reliability. The dominant decomposition pathway for cocaine has been evaluated at elevated temperatures (up to 280$\sp\circ$C). Benzoic acid, but no detectable methyl benzoate, is formed. Solvent extraction and SFE were used to study the recovery of cocaine from U.S. currency. The amount of cocaine which could be recovered was found to decrease with time. ^
Resumo:
Reversed-phase high performance liquid chromatographic methods for the analysis of Haloacetic acids have been developed and compared to conventional direct detection methods. Haloacetic acids commonly found in drinking water, including monochloro-, dichloro-, bromo-, iodo- and trichloroacetic acids- have been studied. The ion pairing agent benzyltributylammonium ion was studied in detail using indirect UV and indirect fluorescence detection. Five different competing ions were evaluated to decrease analysis times and lower the detection limit by this new method. The direct detection method utilized an ammonium sulfate buffer and UV detection yielding a detection limit of 100 ppb. The indirect method developed has the advantage of being able to simultaneously analyze UV and non-UV absorbing ions and molecules but requires long equilibration times and demonstrated lower sensitivity than the direct method. ^
Resumo:
This thesis explains why multinational enterprises (MNEs) headquartered in Spain made significant investments in Latin America in the 1990s. Two independent variables are considered: structural reforms in Latin America, and liberalization in Spain. The first independent variable concerns the ways in which Latin American governments adopted a series of reforms that made their economies attractive to foreign investors. The second variable explains how the prospects of liberalization and foreign competition led Spanish firms to invest abroad in order to expand their businesses. The study will also show the competitive advantage of Spanish MNEs, vis-a-vis other foreign and local competitors in Latin America. This thesis takes an international political economy approach. The core of the thesis shows the development of Spanish direct investment in Latin America and the Caribbean in the 1990s. The theoretical perspectives on MNEs are provided by theory of the firm, industrial organizations theory and alliance theory. ^
Resumo:
The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5∼1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. ^ This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range. ^
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.
Resumo:
There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.
Resumo:
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.
Resumo:
The study of the angular distribution of photon plus jet events in pp collisions at [special characters omitted] = 7 TeV with the Compact Muon Solenoid (CMS) detector is presented. The photon is restricted to the central region of the detector (:η: <1.4442) while the jet is allowed to be present in both central and forward regions of CMS (:η: < 2.4). Dominant backgrounds due to jets fragmenting into neutral mesons are accounted for through the use of a template method that discriminates between signal and background. The angular distribution, :η*:, is defined as the absolute value of the difference in η between the leading photon and leading jet in an event divided by two. The angular distribution ranging from 0–1.4 was examined and compared with next-to-leading order QCD predictions and was found to be in good agreement.
Resumo:
This paper makes a case for a direct relationship between digital literacy and nonlinear thinking styles, articulates a demand for nonlinear thinking styles in education and the workplace, and states implications for a connection between nonlinear thinking styles visual literacy, and intuitive artistic practice.