28 resultados para Context Based Access Control System
em Digital Commons at Florida International University
Resumo:
Access control (AC) limits access to the resources of a system only to authorized entities. Given that information systems today are increasingly interconnected, AC is extremely important. The implementation of an AC service is a complicated task. Yet the requirements to an AC service vary a lot. Accordingly, the design of an AC service should be flexible and extensible in order to save development effort and time. Unfortunately, with conventional object-oriented techniques, when an extension has not been anticipated at the design time, the modification incurred by the extension is often invasive. Invasive changes destroy design modularity, further deteriorate design extensibility, and even worse, they reduce product reliability. ^ A concern is crosscutting if it spans multiple object-oriented classes. It was identified that invasive changes were due to the crosscutting nature of most unplanned extensions. To overcome this problem, an aspect-oriented design approach for AC services was proposed, as aspect-oriented techniques could effectively encapsulate crosscutting concerns. The proposed approach was applied to develop an AC framework that supported role-based access control model. In the framework, the core role-based access control mechanism is given in an object-oriented design, while each extension is captured as an aspect. The resulting framework is well-modularized, flexible, and most importantly, supports noninvasive adaptation. ^ In addition, a process to formalize the aspect-oriented design was described. The purpose is to provide high assurance for AC services. Object-Z was used to specify the static structure and Predicate/Transition net was used to model the dynamic behavior. Object-Z was extended to facilitate specification in an aspect-oriented style. The process of formal modeling helps designers to enhance their understanding of the design, hence to detect problems. Furthermore, the specification can be mathematically verified. This provides confidence that the design is correct. It was illustrated through an example that the model was ready for formal analysis. ^
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications.
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. ^ In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. ^ In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications. ^
Resumo:
The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.
Resumo:
A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
Hospitality managers may assume that unless under control, ethics in their operations are out of control. This article proposes a management control system for ethics.
Resumo:
This thesis describes the development of an adaptive control algorithm for Computerized Numerical Control (CNC) machines implemented in a multi-axis motion control board based on the TMS320C31 DSP chip. The adaptive process involves two stages: Plant Modeling and Inverse Control Application. The first stage builds a non-recursive model of the CNC system (plant) using the Least-Mean-Square (LMS) algorithm. The second stage consists of the definition of a recursive structure (the controller) that implements an inverse model of the plant by using the coefficients of the model in an algorithm called Forward-Time Calculation (FTC). In this way, when the inverse controller is implemented in series with the plant, it will pre-compensate for the modification that the original plant introduces in the input signal. The performance of this solution was verified at three different levels: Software simulation, implementation in a set of isolated motor-encoder pairs and implementation in a real CNC machine. The use of the adaptive inverse controller effectively improved the step response of the system in all three levels. In the simulation, an ideal response was obtained. In the motor-encoder test, the rise time was reduced by as much as 80%, without overshoot, in some cases. Even with the larger mass of the actual CNC machine, decrease of the rise time and elimination of the overshoot were obtained in most cases. These results lead to the conclusion that the adaptive inverse controller is a viable approach to position control in CNC machinery.
Resumo:
This thesis chronicles the design and implementation of a Intemet/Intranet and database based application for the quality control of hurricane surface wind observations. A quality control session consists of selecting desired observation types to be viewed and determining a storm track based time window for viewing the data. All observations of the selected types are then plotted in a storm relative view for the chosen time window and geography is positioned for the storm-center time about which an objective analysis can be performed. Users then make decisions about data validity through visual nearestneighbor comparison and inspection. The project employed an Object Oriented iterative development method from beginning to end and its implementation primarily features the Java programming language.
Resumo:
This thesis chronicles the design and implementation of a Internet/Intranet and database based application for the quality control of hurricane surface wind observations. A quality control session consists of selecting desired observation types to be viewed and determining a storm track based time window for viewing the data. All observations of the selected types are then plotted in a storm relative view for the chosen time window and geography is positioned for the storm-center time about which an objective analysis can be performed. Users then make decisions about data validity through visual nearest-neighbor comparison and inspection. The project employed an Object Oriented iterative development method from beginning to end and its implementation primarily features the Java programming language. ^
Resumo:
Modern software systems are often large and complicated. To better understand, develop, and manage large software systems, researchers have studied software architectures that provide the top level overall structural design of software systems for the last decade. One major research focus on software architectures is formal architecture description languages, but most existing research focuses primarily on the descriptive capability and puts less emphasis on software architecture design methods and formal analysis techniques, which are necessary to develop correct software architecture design. ^ Refinement is a general approach of adding details to a software design. A formal refinement method can further ensure certain design properties. This dissertation proposes refinement methods, including a set of formal refinement patterns and complementary verification techniques, for software architecture design using Software Architecture Model (SAM), which was developed at Florida International University. First, a general guideline for software architecture design in SAM is proposed. Second, specification construction through property-preserving refinement patterns is discussed. The refinement patterns are categorized into connector refinement, component refinement and high-level Petri nets refinement. These three levels of refinement patterns are applicable to overall system interaction, architectural components, and underlying formal language, respectively. Third, verification after modeling as a complementary technique to specification refinement is discussed. Two formal verification tools, the Stanford Temporal Prover (STeP) and the Simple Promela Interpreter (SPIN), are adopted into SAM to develop the initial models. Fourth, formalization and refinement of security issues are studied. A method for security enforcement in SAM is proposed. The Role-Based Access Control model is formalized using predicate transition nets and Z notation. The patterns of enforcing access control and auditing are proposed. Finally, modeling and refining a life insurance system is used to demonstrate how to apply the refinement patterns for software architecture design using SAM and how to integrate the access control model. ^ The results of this dissertation demonstrate that a refinement method is an effective way to develop a high assurance system. The method developed in this dissertation extends existing work on modeling software architectures using SAM and makes SAM a more usable and valuable formal tool for software architecture design. ^
Resumo:
The purpose of this study was to determine if an experimental context-based delivery format for mathematics would be more effective than a traditional model for increasing the performance in mathematics of at-risk students in a public high school of choice, as evidenced by significant gains in achievement on the standards-based Mathematics subtest of the FCAT and final academic grades in Algebra I. The guiding rationale for this approach is captured in the Secretary's Commission on Achieving Necessary Skills (SCANS) report of 1992 that resulted in school-to-work initiatives (United States Department of Labor). Also, the charge for educational reform has been codified at the state level as Educational Accountability Act of 1971 (Florida Statutes, 1995) and at the national level as embodied in the No Child Left Behind Act of 2001. A particular focus of educational reform is low performing, at-risk students. ^ This dissertation explored the effects of a context-based curricular reform designed to enhance the content of Algebra I content utilizing a research design consisting of two delivery models: a traditional content-based course; and, a thematically structured, content-based course. In this case, the thematic element was business education as there are many advocates in career education who assert that this format engages students who are often otherwise disinterested in mathematics in a relevant, SCANS skills setting. The subjects in each supplementary course were ninth grade students who were both low performers in eighth grade mathematics and who had not passed the eighth grade administration of the standards-based FCAT Mathematics subtest. The sample size was limited to two groups of 25 students and two teachers. The site for this study was a public charter school. Student-generated performance data were analyzed using descriptive statistics. ^ Results indicated that contrary to the beliefs held by many, contextual presentation of content did not cause significant gains in either academic performance or test performance for those in the experimental treatment group. Further, results indicated that there was no meaningful difference in performance between the two groups. ^
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^