25 resultados para Automatic water level recorder (AWLR)
em Digital Commons at Florida International University
Resumo:
Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.
Resumo:
The coastal wetlands of northeastern Florida Bay are seasonally-inundated dwarf mangrove habitat and serve as a primary foraging ground for wading birds nesting in Florida Bay. A common paradigm in pulse-inundated wetlands is that prey base fishes increase in abundance while the wetland is flooded and then become highly concentrated in deeper water refuges as water levels recede, becoming highly available to wading birds whose nesting success depends on these concentrations. Although widely accepted, the relationship between water levels, prey availability and nesting success has rarely been quantified. I examine this paradigm using Roseate Spoonbills that nest on the islands in northeastern Florida Bay and forage on the mainland. Spoonbill nesting success and water levels on their foraging grounds have been monitored since 1987 and prey base fishes have been systematically sampled at as many as 10 known spoonbill foraging sites since 1990. Results demonstrated that the relationship between water level and prey abundance was not linear but rather there is likely a threshold, or series of thresholds, in water level that result in concentrated prey. Furthermore, the study indicates that spoonbills require water level-induced prey concentrations in order to have enough food available to successfully raise young.
Resumo:
Interferometric synthetic aperture radar (InSAR) techniques can successfully detect phase variations related to the water level changes in wetlands and produce spatially detailed high-resolution maps of water level changes. Despite the vast details, the usefulness of the wetland InSAR observations is rather limited, because hydrologists and water resources managers need information on absolute water level values and not on relative water level changes. We present an InSAR technique called Small Temporal Baseline Subset (STBAS) for monitoring absolute water level time series using radar interferograms acquired successively over wetlands. The method uses stage (water level) observation for calibrating the relative InSAR observations and tying them to the stage's vertical datum. We tested the STBAS technique with two-year long Radarsat-1 data acquired during 2006–2008 over the Water Conservation Area 1 (WCA1) in the Everglades wetlands, south Florida (USA). The InSAR-derived water level data were calibrated using 13 stage stations located in the study area to generate 28 successive high spatial resolution maps (50 m pixel resolution) of absolute water levels. We evaluate the quality of the STBAS technique using a root mean square error (RMSE) criterion of the difference between InSAR observations and stage measurements. The average RMSE is 6.6 cm, which provides an uncertainty estimation of the STBAS technique to monitor absolute water levels. About half of the uncertainties are attributed to the accuracy of the InSAR technique to detect relative water levels. The other half reflects uncertainties derived from tying the relative levels to the stage stations' datum.
Resumo:
The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.
Resumo:
Growth, morphology and biomass allocation in response to water depth was studied in white water lily,Nymphaea odorata Aiton. Plants were grown for 13 months in 30, 60 and 90 cm water in outdoor mesocosms in southern Florida. Water lily plant growth was distinctly seasonal with plants at all water levels producing more and larger leaves and more flowers in the warmer months. Plants in 30 cm water produced more but smaller and shorter-lived leaves than plants at 60 cm and 90 cm water levels. Although plants did not differ significantly in total biomass at harvest, plants in deeper water had significantly greater biomass allocated to leaves and roots, while plants in 30 cm water had significantly greater biomass allocated to rhizomes. Although lamina area and petiole length increased significantly with water level, lamina specific weight did not differ among water levels. Petiole specific weight increased significantly with increasing water level, implying a greater cost to tethering the larger laminae in deeper water. Lamina length and width scaled similarly at different water levels and modeled lamina area (LA) accurately (LAmodeled = 0.98LAmeasured + 3.96, R2 = 0.99). Lamina area was highly correlated with lamina weight (LW = 8.43LA − 66.78, R2 = 0.93), so simple linear measurements can predict water lily lamina area and lamina weight. These relationships were used to calculate monthly lamina surface area in the mesocosms. Plants in 30 cm water had lower total photosynthetic surface area than plants in 60 cm and 90 cm water levels throughout, and in the summer plants in 90 cm water showed a great increase in photosynthetic surface area as compared to plants in shallower water. These results support setting Everglades restoration water depth targets for sloughs at depths ≥45 cm and suggest that in the summer optimal growth for white water lilies occurs at depths ≥75 cm.
Resumo:
Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.
Resumo:
We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.
Resumo:
Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.
Resumo:
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the ‘reaction–diffusion’ mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction–diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first—the ‘refuge mechanism’—hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the ‘dynamic ideal free distribution mechanism’ is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.
Resumo:
We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.
Resumo:
This paper assesses the potential of using spaceborne X-band synthetic aperture radar (SAR) data for monitoring water-level changes over wetlands. Our analysis is based on three sets of TerraSAR-X (TSX) observations acquired over South Florida's Everglades wetlands during an eight-month period in 2008. The first set was acquired in single HH polarization stripmap mode over our northern study area, consisting of managed wetlands and urban environments. The second set was acquired in dual-polarization stripmap mode over the western half of the same area, consisting mostly of managed wetlands. The third set was also acquired with dual-polarization stripmap mode over our southern study area, consisting of natural flow freshand salt-water wetlands in the southern Everglades. The first data set was used for a proof-of-concept study to verify that X-band data can generate coherent interferograms in wetland areas. Interferometric processing of this data set shows a high level of coherence (> 0.35) over both wetland and urban regions, maintaining interferometric phase in all three interferograms spanning 11 days. Surprisingly, phase is maintained over some of the wetlands even for interferograms spanning 33 days. The other two data sets were used to evaluate interferometric coherence of all four polarization modes and to determine dominant scattering mechanism in each wetland environment. Our results show high coherence values (> 0.4) in all polarization modes, with highest values in HH, then VV, and lowest in HV or VH. Interferograms calculated from multipolarization data show very similar fringe patterns regardless of the polarization type, suggesting that the phase information in all polarization data reflects water-level changes in wetlands and that volume scattering may be less important than commonly believed. We also used the two multipolarization data sets to conduct the Pauli decomposition, finding a strong dependence of scattering mechanism on vegetation t- - ype. The high interferometric coherence level of all polarization data suggests that a significant part of the X-band scattered signal interacts with lower sections of the vegetation (trunks and branches), because scattering from wind-affected canopies cannot support such a high coherence level. The high spatial resolution of TSX, combined with its 11-day repeat orbit, makes this X-band sensor surprisingly suitable for wetland interferometric SAR applications.
Resumo:
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.
Resumo:
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non-linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11-year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance-tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.
Resumo:
1. The niche variation hypothesis predicts that among-individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within-site spread to characterise site-level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among-individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among-individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among-individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co-occurring species, most of which consume similar macroinvertebrates.