3 resultados para Aids to navigation.
em Digital Commons at Florida International University
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.
Resumo:
More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^