5 resultados para Active power interpolation

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A gap exists in the knowledge of acute dehydration and its effect on anaerobic muscular power. Therefore the purpose of this study was to examine the effects of active dehydration by exercise in a hot humid environment on anaerobic muscular power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: While research suggests whole body vibration (WBV) positively affects measures of neuromuscular performance in athletes, researchers have yet to address appropriate and effective vibration protocols. Objective: To identify the acute effects of continuous and intermittent WBV on muscular power and agility in recreationally active females. Design: We used a randomized 3-period cross-over design to observe the effects of 3 vibration protocols on muscular power and agility. Setting: Sports Science and Medicine Research Laboratory at Florida International University. Patients or Other Participants: Eleven recreationally active female volunteers (age=24.4±5.7y; ht=166.0±10.3cm; mass=59.7±14.3kg). Interventions: Each session, subjects stood on the Galileo WBV platform (Orthometrix, White Plains, NY) and received one of three randomly assigned vibration protocols. Our independent variable was vibration length (continuous, intermittent, or no vibration). Main Outcome Measures: An investigator blinded to the vibration protocol measured muscular power and agility. We measured muscular power with heights of squat and countermovement jumps. We measured agility with the Illinois Agility Test. Results: Continuous WBV significantly increased SJ height from 97.9±7.6cm to 98.5±7.5cm (P=0.019, β=0.71, η2 =0.07) but not CMJ height [99.1±7.4cm pretest and 99.4±7.4cm posttest (P=0.167, β=0.27)] or agility [19.2±2.1s pretest and 19.0±2.1s posttest (P=0.232, β=0.21)]. Intermittent WBV significantly enhanced SJ height from 97.6±7.7cm to 98.5±7.7cm (P=0.017, β=0.71, η2 =0.11) and agility 19.4±2.2s to 19.0±2.1s (P=0.001, β=0.98, η2=0.16), but did not effect CMJ height [98.7±7.7cm pretest and 99.3±7.3cm posttest (P=0.058, β=0.49)]. Conclusion: Continuous WBV increased squat jump height, while intermittent vibration enhanced agility and squat jump height. Future research should continue investigating the effect of various vibration protocols on athletic performance.