28 resultados para soil pH, nutrient


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural, unenriched Evergladeswetlands are known to be limited by phosphorus(P) and responsive to P enrichment. However,whole-ecosystem evaluations of experimental Padditions are rare in Everglades or otherwetlands. We tested the response of theEverglades wetland ecosystem to continuous,low-level additions of P (0, 5, 15, and30 μg L−1 above ambient) in replicate,100 m flow-through flumes located in unenrichedEverglades National Park. After the first sixmonths of dosing, the concentration andstanding stock of phosphorus increased in thesurface water, periphyton, and flocculentdetrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean =149 μg P g−1), while the flocculentdetrital layer stored most of the accumulated P(30 μg L−1: mean = 1.732 g P m−2,control: mean = 0.769 g P m−2). Significant short-term responsesof P concentration and standing stock wereobserved primarily in the high dose (30 μgL−1 above ambient) treatment. Inaddition, the biomass and estimated P standingstock of aquatic consumers increased in the 30and 5 μg L−1 treatments. Alterationsin P concentration and standing stock occurredonly at the upstream ends of the flumes nearestto the point source of added nutrient. Thetotal amount of P stored by the ecosystemwithin the flume increased with P dosing,although the ecosystem in the flumes retainedonly a small proportion of the P added over thefirst six months. These results indicate thatoligotrophic Everglades wetlands respondrapidly to short-term, low-level P enrichment,and the initial response is most noticeable inthe periphyton and flocculent detrital layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2. Wood disks (8–10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3. A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4. Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ± 2% of dry weight), while Laguncularia racemosa had the lowest (10 ± 2%). Labile components decayed at rates of 0.37–23.71% month−1, while refractory components decayed at rates of 0.001–0.033% month−1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5. Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6. Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7. As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Florida Everglades is an oligotrophic wetland system with tree islands as one of its most prominent landscape features. Total soil phosphorus concentrations on tree islands can be 6 to 100 times greater than phosphorus levels in the surrounding marshes and sloughs, making tree islands nutrient hotspots. Several mechanisms are believed to redistribute phosphorus to tree islands: subsurface water flows generated by evapotranspiration of trees, higher deposition rates of dry fallout, deposition of guano by birds and other animals, groundwater upwelling, and bedrock mineralization by tree exudates. A conceptual model is proposed, in which the focused redistribution of limiting nutrients, especially phosphorus, onto tree islands controls their maintenance and expansion. Because of increased primary production and peat accretion rates, the redistribution of phosphorus can result in an increase in both tree island elevation and size. Human changes to hydrology have greatly decreased the number and size of tree islands in parts of the Everglades. The proposed model suggests that the preservation of existing tree islands, and ultimately of the Everglades landscape, requires the maintenance of these phosphorus redistribution mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation ( ), stomatal conductance ( ), intercellular CO2 concentration ( ), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and and, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive plant species are major threats to the biodiversity and ecosystem stability. The purpose of this study is to understand the impacts of invasive plants on soil nutrient cycling and ecological functions. Soil samples were collected from rhizosphere and non-rhizosphere of both native and exotic plants from three genera, Lantana, Ficus and Schinus, at Tree Tops Park in South Florida, USA. Experimental results showed that the cultivable bacterial population in the soil under Brazilian pepper (invasive Schinus) was approximately ten times greater than all other plants. Also, Brazilian pepper lived under conditions of significantly lower available phosphorus but higher phosphatase activities than other sampled sites. Moreover, the respiration rates and soil macronutrients in rhizosphere soils of exotic plants were significantly higher than those of the natives (Phosphorus, p=0.034; Total Nitrogen, p=0.0067; Total Carbon, p=0.0243). Overall, the soil biogeochemical status under invasive plants was different from those of the natives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to determine what challenges small-scale organic farmers face in choosing their particular production, marketing, and organizational strategies in Miami-Dade County. Rapid soil assessments were used on six organic farms to determine the effects of soil nutrient management in terms of pH, soil organic matter (SOM), and phosphorus (P). Potential costs of inputs were documented for each farm to determine the largest challenges facing the profitability of organic farms. A production, marketing, and organizational analysis determined how farmers shape their inter-farm competitive and cooperative relations. Preliminary findings from soil, input, labor, marketing, and organizational factors indicate that soil health varies dramatically from farm to farm, inputs and labor constitute significant costs, and marketing, production, and organizational strategies show no signs of immediate growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Release of uranium from Na-autunite, an artificial mineral created as a result of polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during slow dissolution of the mineral structure. Stability information of the uranyl-phosphate phases is limited to conditions involving pH, temperature, and a few aqueous organic materials. The carbonate ion, which creates very strong complexes with uranium, is the predominant ion in the groundwater composition. The polyphosphate technology with the formation of autunite was identified as the most feasible remediation strategy to sequester uranium in contaminated groundwater and soil in situ. The objectives of the experimental work were (i) to quantify the effect of bicarbonate on the stability of synthetic sodium meta-autunite created as a result of uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law parameters of the uranium release from Na-autunite during dissolution, and (iii) to compare the process parameters with those obtained for natural calcium meta-autunite. Experiments were conducted using SPTF apparatus, which consists of syringe pumps for controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of synthetic Na-autunite was placed in the reactor and buffer solutions with varying bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped through the reactors. Experiments were conducted at four different temperatures in the range of 5 - 60oC. It was concluded that the rate of release of uranium from synthetic Na-autunite is directly correlated to the bicarbonate concentration. The rate of release of uranium increased from 1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate concentration range tested. The activation energy values were invariant with the change in the bicarbonate concentration; however, pH is shown to influence the activation energy values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the dissolution of autunite mineral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.