20 resultados para Preparatory courses
Resumo:
The purpose of this study was to explore the effects of a service-learning experience on student success as measured by class attendance, course completion, final course grades, and end-of-term evaluation data. Though many outcomes of service-learning experiences have been studied, including ethical values, self-esteem, student personal development, and career preparation, relatively few studies have been conducted on the effects of such experiences on academic achievement, and the studies that have been done have primarily studied students at traditional, four-year, residential universities. The study consisted of 286 students enrolled in six paired courses taught by five instructors at a community college in the Fall term 1996. One section of each pair (the control group) was taught using traditional subject matter and course materials and the other section of each pair (the treatment group) participated in a 20-hour required service- learning activity in addition to the regular course curriculum. The courses in the study included American History, Sociology, College Preparatory English, and Introduction to English Composition. The results of this study indicate that, overall, students who participated in a class in which service-learning was a requirement, achieved higher final course grades and reported greater satisfaction with the course, the instructor, the reading assignments, and the grading system, and the treatment section of one course pair had fewer absences. In addition, the faculty members reported that, in the treatment sections, class discussions were more stimulating, the sections seemed more vital in terms of student involvement, the students seemed more challenged academically, more motivated to learn, and seemed to exert more effort in the course.
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.
Resumo:
Advanced Placement is a series of courses and tests designed to determine mastery over introductory college material. It has become part of the American educational system. The changing conception of AP was examined using critical theory to determine what led to a view of continual success. The study utilized David Armstrong’s variation of Michel Foucault’s critical theory to construct an analytical framework. Black and Ubbes’ data gathering techniques and Braun and Clark’s data analysis were utilized as the analytical framework. Data included 1135 documents: 641 journal articles, 421 newspaper articles and 82 government documents. The study revealed three historical ruptures correlated to three themes containing subthemes. The first rupture was the Sputnik launch in 1958. Its correlated theme was AP leading to school reform with subthemes of AP as reform for able students and AP’s gaining of acceptance from secondary schools and higher education. The second rupture was the Nation at Risk report published in 1983. Its correlated theme was AP’s shift in emphasis from the exam to the course with the subthemes of AP as a course, a shift in AP’s target population, using AP courses to promote equity, and AP courses modifying curricula. The passage of the No Child Left Behind Act of 2001 was the third rupture. Its correlated theme was AP as a means to narrow the achievement gap with the subthemes of AP as a college preparatory program and the shifting of AP to an open access program. The themes revealed a perception that progressively integrated the program into American education. The AP program changed emphasis from tests to curriculum, and is seen as the nation’s premier academic program to promote reform and prepare students for college. It has become a major source of income for the College Board. In effect, AP has become an agent of privatization, spurring other private entities into competition for government funding. The change and growth of the program over the past 57 years resulted in a deep integration into American education. As such the program remains an intrinsic part of the system and continues to evolve within American education.
Resumo:
Modeling Instruction (MI) has been successfully implemented in high school science classes. Moreover, MI curriculum for introductory physics has also been developed at a university level. Noticing the gap, the author will provide theoretical foundations to support the statement that MI curriculum should be developed for college biology courses.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.