28 resultados para Peat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 μg P g−1 and 27 mg N g−1 to 377 μg P g−1 and 22 mg N g−1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52–128 and 24–41, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in δ15N values for canopy (4.0 to −9.4‰), Campnosperma panamense (4.0 to −7.8‰) and understorey (4.8 to −3.1‰) species. Foliar δ15N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar δ15N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanogenesis was studied in soils from two sawgrass wetlands of the Florida Everglades. Marl soils exhibited a significantly higher potential rate of methanogenesis than peat soils. In these wetlands, methanogenesis: (1) decreased rapidly with increasing soil depth, (2) increased at higher temperatures and lower Eh, (3) was stimulated by organic compounds (cellulose, glucose and acetate), and (4) remained unaffected by added ammonium. Lowering the Eh in the peat and marl soils with sulfide or sulfate stimulated methanogenesis. In January 1990, phosphate caused a significant increase in methanogenesis. The potential rates of methanogenesis decreased to undetectable levels when water levels dropped below the surface, and peaked one month after the start of the wet season. Methanogenesis appeared to be a relatively important process in carbon cycling in marl soils and these soils do not accumulate peat. Therefore, one possible explanation for peat accumulation in sawgrass wetlands may be their low rates of methanogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeable reactive barriers (PRB) are constructed from soil solid amendments to support the growth of bacteria that are capable of degrading organic contaminants. The objective of this study was to identify low-cost soil solid amendments that could retard the movement of trichloroethylene (TCE) while serving as long-lived carbon sources to foster its biodegradation in shallow groundwater through the use of a PRB. The natural amendments high in organic carbon content such as eucalyptus mulch, compost, wetland peat, organic humus were compared based on their geophysical characteristics, such as pHw, porosity and total organic carbon (TOC), and as well as TCE sorption potentials. The pHw values were within neutral range except for pine bark mulch and wetland peat. All other geophysical characteristics of the amendments showed suitability for use in a PRB. While the Freundlich model showed better fit for compost and pine bark mulch, the linear sorption model was adequate for eucalyptus mulch, wetland peat and Everglades muck within the concentration range studied (0.2-0.8 mg/L TCE). According to these results, two composts and eucalyptus mulch were selected for laboratory column experiments to evaluate their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. The columns were monitored for pH, ORP, TCE degradation, longevity of nutrients and soluble TOC to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to DCEs; however, the inoculation with the TCE-degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by-product concentration, mostly in the form of DCEs and VC followed by a slow degradation to ethylene. Of the tested amendments eucalyptus mulch was the most effective at supporting the TCE dechlorination. The experimental results of TCE sequential dechlorination took place in eucalyptus mulch and commercial compost from Savannah River Site columns were then simulated using the Hydrus-1D model. The simulations showed good fit with the experimental data. The results suggested that sorption and degradation were the dominant fate and transport mechanisms for TCE and DCEs in the column, supporting the use of these amendments in a permeable reactive barrier to remediate the TCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lepidocaryum tenue Mart. (Arecaceae) is a small, understory palm of terra firme forests of the western and central Amazon basin. Known as irapai, it is used for roof thatch by Amazonian peoples who collect its leaves from the wild and generate income from its fronds and articles fabricated from them. Increasing demand has caused local concern that populations are declining. Cultivation attempts have been unsuccessful. The purpose of this study was to investigate market conditions and quantify population dynamics and demographic responses of harvested and unharvested irapai growing near Iquitos, Peru. ^ Ethnobotanical research included participant surveys to determine movement of thatch tiles, called crisnejas, through Moronacocha Port. I also conducted a seed germination trial, and for four years studied five populations growing in communities with similar topography and soils but different land tenure and management strategies. Stage, survival, leaf production, and reproductive transitions were used to calculate ramet demographic rates and develop population projection matrices. ^ Weavers made an average of 20–30 crisnejas per day (90–130 leaves each), and earned US$0.09 to 0.70 each (US$1.80 to 21.00 per day). Average crisnejas per month sold per vendor was 2,955 with a profit range of US$0.05 to 0.32 per crisneja. Wholesalers worked with capital outlay from US$100 to 400, and an estimated ten to twenty vendors could be found at a given time. Consumers paid between US$0.23 to 1.20 per crisneja. Although differences in demographic rates by location existed, most were not significant enough to attribute to management. ^ After 60 months, mean seed germination rate was 19.5% in all media (37.9% in peat). Seedling survival was less than two percent after twelve months. Annual palm mortality was three percent, and occurred disproportionately in small (<50 cm) palms. Small palms grew more in height. Unharvested palms grew less than harvested palms. Large palms (≥50 cm) produced more leaves, were more likely to reproduce, and collectors harvested them more frequently. Reproductive potentials (sexual and asexual) were low. Population growth rates were greater than or not significantly different from 1.0, indicating populations maintained or increased in size. Current levels of irapai harvest appear sustainable. DNA analysis of stems and recruits is recommended to understand population composition and stage-specific asexual fecundity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to phosphorus (P), nitrogen (N) has received little attention across the Everglades landscape. Despite this lack of attention, N plays important roles in many Everglades systems, including being a significant pollutant in Florida Bay and the Gulf of Mexico, the limiting nutrient in highly P-impacted areas, and an important substrate for microbial metabolism. Storage and transport of N throughout the Everglades is dominated by organic forms, including peat soils and dissolved organic N in the water column. In general, N sources are highest in the northern areas; however, atmospheric deposition and active N2 fixation by the periphyton components are a significant N source throughout most systems. Many of the processes involved in the wetland N cycle remain unmeasured for most of the Everglades systems. In particular, the lack of in situ rates for N2 fixation and denitrification prevent the construction of system-level budgets, especially for the Southern mangrove systems where N export into Florida Bay is critical. There is also the potential for several novel N processes (e.g., Anammox) with an as yet undetermined importance for nitrogen cycling and function of the Everglades ecosystem. Phosphorus loading alters the N cycle by stimulating organic N mineralization with resulting flux of ammonium and DON, and at elevated P concentrations, by increasing rates of N2 fixation and N assimilation. Restoration of hydrology has a potential for significantly impacting N cycling in the Everglades both in terms of affecting N transport, but also by altering aerobic-anaerobic transitions at the soil-water interface or in areas with seasonal drawdowns (e.g., marl prairies). Based on the authors’ understanding of N processes, much more research is necessary to adequately predict potential impacts from hydrologic restoration, as well as the function of Everglades systems as sinks, sources, and transformers of N in the South Florida landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.