3 resultados para ion-exchange chromatography fractionation
em Universidade Federal de Uberlândia
Resumo:
CHAPTER II: Snake venoms are a complex mixture of organic and inorganic compounds, proteins and peptides such as aminotransferases, acetylcholinesterase, hyaluronidases, L-amino acid oxidase, phospholipase A2, metalloproteases, serine proteases, lectins, disintegrins, and others. Phospholipase A2 directly or indirectly influence the pathophysiological effect on envenomation, as well as their participation in the digestion of the prey. They have several other activities such as hemolytic indirect action, cardiotoxicity, aggregating of platelets, anticoagulant, edema, myotoxic and inflammatory activities. In this work, we describe the functional characterization of BaltMTx, a PLA2 from Bothrops alternatus that inhibits platelet aggregation and present bactericidal effect. The purification of BaltMTx was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, followed by hydrophobic chromatography on Phenyl–Sepharose and affinity chromatography on HiTrap™ Heparin HP). The protein was purified to homogeneity as judged by its migration profile in SDS–PAGE stained with coomassie blue, and showed a molecular mass of about 15 kDa under reducing conditions and approximately 25 kDa in non-reducing conditions. BaltMTx showed a rather specific inhibitory effect on platelet aggregation induced by epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by collagen or adenosine diphosphate. BaltMTx also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. High concentrations of BatlMTx stimulated the proliferation of Leishmania (Leishmania) infantum and Leishmania (Viania) braziliensis. BaltMTx induced production of inflammatory mediators such as IL-10, IL-12, TNF-α and NO. BaltMTx could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders as well as bactericidal agent.
Resumo:
This dissertation presents the development of voltammetric methods to zinc determination in multivitamin commercial samples, talc, and art materials for painting (soft pastel) combining an alkaline extraction with 1.0 mol L-1 NaOH aqueous solution and bismuth modified electrodes. Two electrodes were used to zinc quantification in the samples, bismuth film electrode (BiFE) plated in situ onto glassy carbon and carbon paste electrode chemically modified with strongly acidic ion exchange resin Amberlite® IR 120 and bismuth nanostructures (EPCAmbBi). It was verified that the best concentration of Bi3+ for Bi film deposition onto glassy carbon was 4.0 μmol L-1 using an 0.1 mol L-1 acetate buffer aqueous solution (pH = 4.5) as supporting electrolyte. The best condition to formation of Bi nanostructures in the EPC modified with 10 % Amberlite® IR 120 was the use of 30 s to pre-concentration (open circuit) in 0.5 mmol L-1 Bi3+ aqueous solution (pH 5.5) prepared with supporting electrolyte solution. The obtained analytical curve for Zn2+ using BiFE presented linear range from 0.5 to 5.0 μmol L-1, the limit of detection (LD) was 41 nmol L-1. For EPCAmbBi only one linear range was observed for the analytical curve varying the Zn2+ concentration from 0.05 to 8.2 μmol L-1, LD obtained in this curve it was equal to 10 nmol L-1. The EPCAmbBi presented the most intense and sharp anodic stripping peaks for Zn2+ presenting, therefore, a better voltammetric profile, with sensitivity higher than obtained with the BiFE. Moreover, the EPCAmbBi presented a LD lower than that obtained with the BiFE. Alkaline extraction was an efficient sample pretreatment to extract Zn2+ from solid samples, besides that, this procedure was less susceptible to interferences from Cu2+, since it remains at extracting vessel as insoluble Cu(OH)2. The combination of alkaline extraction with the EPCAmbBi is a simple, fast, efficient and low cost for the zinc determination in pharmaceutical formulations and art materials for painting (soft pastel) samples, which can be employed as a low-cost alternative method to the atomic absorption spectroscopy.
Resumo:
Chemical modification of polymer matrices is an alternative way to change its surface properties. The introduction of sulfonic acid groups in polymer matrices alter properties such as adhesion, wettability, biocampatibility, catalytic activity, among others. This paper describes the preparation of polymeric solid acid based on the chemical modification of poly (1-fenietileno) (PS) and Poly (1-chloroethylene) (PVC) by the introduction of sulfonic acid groups and the application of these polymers as catalysts in the esterification reaction of oleic acid with methanol. The modified materials were characterized by Infrared Spectroscopy, Elemental Analysis and titration acid-base of the acid groups. All techniques confirmed the chemical changes and the presence of sulfur associated with sulfonic acid groups or sulfates. The modified polymers excellent performance in the esterification reaction of oleic acid with methanol a degree of conversion higher than 90% for all investigated polymers (modified PS and PVC (5% w / w)), with a mass ratio of oleic acid: methanol 1:10 to 100 ° C. The best performance was observed for the modified PVC catalyst (PVCS) which showed low degree of swelling during the reactions is recovered by filtration different from that observed for polystyrene sulfonate (PSS). Given these facts, the PVCS was employed as a catalyst in the esterification reaction of oleic acid in different times and different temperatures to obtain the kinetic parameters of the reaction. Experimental data show a great fit for pseudo-homogeneous model of second order and activation energy value of 41.12 kJ mol -1, below that found in the literature for the uncatalyzed reaction, 68.65 kJ mol -1 .The PVCS exhibits good catalytic activity for 3 times of reuse, with a slight decrease in the third cycle, but with a conversion of about 78%. The results show that solid polymeric acid has good chemical stability for the application in esterification reaction of commercial importance with possible application in the biodiesel production. The advantages in use of this system are the increased reaction rate at about 150 times, at these test conditions, the replacement of sulfuric acid as a catalyst for this being the most corrosive and the possibility of reuse of the polymer for several cycles.