2 resultados para corantes sintéticos
em Universidade Federal de Uberlândia
Resumo:
Chapter I - The obligate intracellular parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects humans and generates economic losses in farm animals. When prevention fails disease refers to the diagnosis and subsequent treatment if the individual is diagnosed as positive. Therefore, the development of new accurate diagnostic tools for detecting T. gondii infection is a need in particular to determine the environmental source of infection which can result in more appropriate public health policies against different routes of infection and prevent potential damage that toxoplasmosis can cause when animals are infected. Chapter II - The domestic chicken (Gallus gallus domesticus) are considered epidemiological sentinels, still representing a major source of recombinant strains when predated by cats, it is common to find them with multiple infections. We evaluate the diagnostic potential of six synthetic peptides (SAG2Y, MIC1, M2AP, GRA10, ROP2 and ROP7) predicted in silico from tachyzoites immunodominant markers of T. gondii in samples from naturally infected chickens, comparing synthetic peptides with antigen total soluble (STAg). In general, our results demonstrated that reactivity rates and positivity for these peptides are similar to the STAg, and the ROP7 peptide and the combination of peptides MIC1+ROP2 have significant sensitivity, confirming them as potential diagnostic tools for the diagnosis of toxoplasmosis in chickens. Chapter III - Sheep (Ovis aries) are commonly infected with Toxoplasma gondii due to his eating habits. Infection in pregnant sheep can have serious consequences such as embryonic death, fetal resorption, mummification, and neonatal death. One concern regarding the infection in these animals is that the meat can be a source of contamination to humans and other carnivores. Therefore perform accurate diagnosis in these animals is of fundamental importance. In the present study we evaluated the potential of new synthetic peptides as a diagnostic tool. Synthetic peptides (SAG2Y, SRS52A, MIC14, GRA4, GRA10 and GRA15) were predicted in silico from immunodominant proteins of T. gondii. We determine the levels of IgG antibodies using sera obtained from two farms in the city of Uberlândia. Analyzing the results together, the peptide combination GRA10+GRA15 (Accuracy = 0,82) showed better characteristics compared with the other mixtures. This preparation could be better analyzed with an antigenic mixture potential use in the diagnosis of toxoplasmosis in sheep and other species.
Resumo:
This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.