2 resultados para anticorpos monoclonais
em Universidade Federal de Uberlândia
Resumo:
The various types of pig farming, intensive and extensive, expose them to pig parasites but also to those from the environment of the breeding site. In this work was evaluated the exposure of bigs bred in technified farms, SISCAL (intensive breeding system in pens) and not technified (backyard) to leptospira, ticks and rickettsiae. Blood sera were analyzed to determine titers of antibodies anti-Leptospira by SAM technique and antibodies anti-rickettsial by IFA, pigs were inspected for ticks and in their breeding environment and surrounding areas (pastures and riparian vegetation), ticks were collected by the flannel dragging technique. In the farms of pigs 10.4% had anti-Leptospira antibodies, followed by SISCAL (8%) and backyard animals (2.5%). The serovars found were Bratislava, Pomona, serovar, Canicola and Icterohaemorrhagiae. Higher percentage of properties with pigs raised outdoors (SISCAL) had tick infested animals (20%) than those raised in backyard (6.7%), while commercial farms had no infested pigs nor infested breeding place. In both SISCAL and backyard pig breeding properties ticks were observed at the breeding site environment. Tick infestations were detected in areas surrounding pig breeding site in all three husbandry suystems. Ticks found were all Amblyomma scultpum nymphs or adults with the exception of one of Amblyomma parvum adult. In relation to anti-rickettsia serology to five Rickettsia species, 55.2% of pigs from commercial farms reacted to al least one species, backyard pigs reacted to 89.7% and all pigs of SISCAL showed anti-rickettsia titers. Consecutive tick sampling (June 2014 to February 2016) in SISCAL FAZU in Uberaba, showed the establishment A. sculptum ticks maintained by domestic pigs. These observations demonstrate the ability the pigs to maintain populations of A. sculptum at a favorable environment and may indicate a new trend in environmental infestations by this species of tick. Exposure to Leptospira and Rickettsia demonstrated the potential pigs exposure and transmission of important diseases in public health.
Resumo:
Chapter I - The obligate intracellular parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects humans and generates economic losses in farm animals. When prevention fails disease refers to the diagnosis and subsequent treatment if the individual is diagnosed as positive. Therefore, the development of new accurate diagnostic tools for detecting T. gondii infection is a need in particular to determine the environmental source of infection which can result in more appropriate public health policies against different routes of infection and prevent potential damage that toxoplasmosis can cause when animals are infected. Chapter II - The domestic chicken (Gallus gallus domesticus) are considered epidemiological sentinels, still representing a major source of recombinant strains when predated by cats, it is common to find them with multiple infections. We evaluate the diagnostic potential of six synthetic peptides (SAG2Y, MIC1, M2AP, GRA10, ROP2 and ROP7) predicted in silico from tachyzoites immunodominant markers of T. gondii in samples from naturally infected chickens, comparing synthetic peptides with antigen total soluble (STAg). In general, our results demonstrated that reactivity rates and positivity for these peptides are similar to the STAg, and the ROP7 peptide and the combination of peptides MIC1+ROP2 have significant sensitivity, confirming them as potential diagnostic tools for the diagnosis of toxoplasmosis in chickens. Chapter III - Sheep (Ovis aries) are commonly infected with Toxoplasma gondii due to his eating habits. Infection in pregnant sheep can have serious consequences such as embryonic death, fetal resorption, mummification, and neonatal death. One concern regarding the infection in these animals is that the meat can be a source of contamination to humans and other carnivores. Therefore perform accurate diagnosis in these animals is of fundamental importance. In the present study we evaluated the potential of new synthetic peptides as a diagnostic tool. Synthetic peptides (SAG2Y, SRS52A, MIC14, GRA4, GRA10 and GRA15) were predicted in silico from immunodominant proteins of T. gondii. We determine the levels of IgG antibodies using sera obtained from two farms in the city of Uberlândia. Analyzing the results together, the peptide combination GRA10+GRA15 (Accuracy = 0,82) showed better characteristics compared with the other mixtures. This preparation could be better analyzed with an antigenic mixture potential use in the diagnosis of toxoplasmosis in sheep and other species.