2 resultados para Logica difusa
em Universidade Federal de Uberlândia
Resumo:
This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.
Resumo:
This study aimed to evaluate different concentrations of kisspeptin, as well as the interaction of kisspeptin and FSH/LH in vitro maturation and oocyte competence in cattle. In Experiment 1 was determined the minimum concentration of Kisspeptin (Kp) to be used, and in Experiment 2 was evaluated its interection with FSH and LH. The oocytes were collected in a commercial slaughterhouse and only Grade I oocytes were utilized. The oocytes were cultured in TCM-199 medium with bicarbonate plus 10% FBS, sodium pyruvate (22μg/mL), amikacin (83mg/mL), FSH (0.5μg/mL), with different concentrations of Kp, the treatments were: FSH + 0M Kp-10; FSH + 10-7M Kp-10, FSH + 10-6M Kp-10; FSH + 10-5M Kp-10. In Experiment 2, was used better concentration of Kp found in Experiment 1, the following treatments: no hormones; FSH; FSH + Kp-10; FSH + LH; FSH, LH + Kp-10; Kp-10. The oocyte competence was determined by nuclear maturation, mitochondrial distribution, MitoTracker® Orange CMTMRos fluorescence intensity and DCF. The evaluation of nuclear maturation was made after 24 hours incubation and the oocytes were stained with DAPI to determine the nuclear stage (Germinal Vesicle-GV, Metaphase I-MI and Metaphase II-MII).The mitochondrial distribution was classified as peripheral/semiperipheral and diffuse in clusters/granules, evaluated after stained with the MitoTracker® Orange CMTMRos, and was also identified the intensity of it. To determine the intensity of ROS oocytes were stained with DCF. The statistical analysis was performed by SAS GLIMMIX PROC. In Experiment 1 oocytes matured only with the FSH reached a smaller nuclear maturation when compared to those who were matured with Kisspeptin at different concentrations (FSH:13/33; FSH + 10-7M Kp-10: 28/35; FSH + 10-6M Kp-10:30/34; FSH + 10-5M Kp-10:28/32; P=0,0001). There was no statistical difference in mitochondrial distribution between treatments (P>0.05). The fluorescence intensity of MitoTracker did not differ among treatments (P>0.05). The DCF fluorescence intensity was lower when the concentration of Kp was increased in the medium (FSH:12177726,1; FSH + 10-7M Kp-10:10945982,83; FSH + 10-6M Kp-10:9820536,53; FSH + 10-5M Kp-10:9147016,38; P<0,0001). Based in the Experiment 1 results, the concentration of Kp was determined in 10-7M. In Experiment 2 the mitochondrial distribution was different between treatments, because oocytes matured only with Kp or FSH+LH, reached a oocyte competence greater than those maturated with FSH only or without hormone addition (no hormones:66,66%; FSH:66,66%; FSH + Kp-10:75,86%; FSH + LH:91,17%; FSH, LH + Kp-10:82,85%; Kp-10:91,17%; P<0,05). The no hormones resulted in a lower nuclear maturation than the other treatments (no hormones: 5/18; FSH:18/32; FSH + Kp-10:22/29; FSH + LH:26/33; FSH, LH + Kp-10:26/34; Kp-10:25/34; P=0,0094). The fluorescence intensity of probes MitoTracker and DCF was lower when Kp was added to the maturation medium (no hormones:1228363/540069; FSH:2307984/1395751; FSH + Kp-10:1941890/1114948; FSH + LH:2502145/1722376; FSH, LH + Kp-10:2286173/1467782; Kp-10:1859411/979325 P<0,0001). So this is the first study that shows that Kisspeptin stimulates oocyte maturation without the presence of gonadotropins in the maturation medium.