2 resultados para elliptical core non-hexagonal symmetry

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permutation games are totally balanced transferable utility cooperative games arising from certain sequencing and re-assignment optimization problems. It is known that for permutation games the bargaining set and the core coincide, consequently, the kernel is a subset of the core. We prove that for permutation games the kernel is contained in the least core, even if the latter is a lower dimensional subset of the core. By means of a 5-player permutation game we demonstrate that, in sense of the lexicographic center procedure leading to the nucleolus, this inclusion result can not be strengthened. Our 5-player permutation game is also an example (of minimum size) for a game with a non-convex kernel.