1 resultado para Multi-objective evolutionary algorithm
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (2)
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (55)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (51)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (21)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (27)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (38)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (21)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (6)
- Scielo Uruguai (1)
- Universidad de Alicante (21)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (80)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (13)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (19)
- Universidade Metodista de São Paulo (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (38)
- Université de Montréal (3)
- Université de Montréal, Canada (21)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (27)
- University of Washington (3)
Resumo:
Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.