13 resultados para Games with music.
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
We consider a possible game-theoretic foundation of Forchheimer's model of dominant-firm price leadership based on quantity-setting games with one large firm and many small firms. If the large firm is the exogenously given first mover, we obtain Forchheimer's model. We also investigate whether the large firm can emerge as a first mover of a timing game.
Resumo:
We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.
Resumo:
We introduce the concept of a TUU-game, a transferable utility game with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferable utility game. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TUgames are convex.
Resumo:
We introduce the concept of a TUU-game, a transferableutilitygame with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferableutilitygame. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TU-games are convex.
Resumo:
We examine assignment games, wherematched pairs of firms and workers create some monetary value to distribute among themselves and the agents aim to maximize their payoff. In the majority of this literature, externalities - in the sense that a pair’s value depends on the pairing of the others - have been neglected. However, inmost applications a firm’s success depends on, say, the success of its rivals and suppliers. Thus, it is natural to ask how the classical results on assignment games are affected by the introduction of externalities? The answer is – dramatically. We find that (i) a problem may have no stable outcome, (ii) stable outcomes can be inefficient (not maximize total value), (iii) efficient outcomes can be unstable, and (iv) the set of stable outcomes may not form a lattice. We show that stable outcomes always exist if agents are "pessimistic." This is a knife-edge result: there are problems in which the slightest optimism by a single pair erases all stable outcomes.
Resumo:
A hagyományos szavazási játékok speciális átruházható hasznosságú, kooperatív játékok, úgynevezett egyszerű játékok, ahol a játékosok a pártok, és az egyes koalíciók értéke 1 vagy 0 attól függően, hogy az adott koalíció elég erős-e az adott jogszabály elfogadásához, vagy sem. Ebben a cikkben bevezetjük az általánosított súlyozott szavazási játékok fogalmát, ahol a pártok mandátumainak száma a valószínűségi változó. Magyar példákon keresztül mutatjuk be az új megközelítés használhatóságát. / === / Voting games are cooperative games with transferable utility, so-called simple games, where the players are parties and the value of a coalition may be 0 or 1 depending on its ability to pass a new law. The authors introduce the concept of generalized weighted voting games where the parties' strengths are random variables. taking examples from Hungary to illustrate the use of this approach.
Resumo:
We consider von Neumann -- Morgenstern stable sets in assignment games with one seller and many buyers. We prove that a set of imputations is a stable set if and only if it is the graph of a certain type of continuous and monotone function. This characterization enables us to interpret the standards of behavior encompassed by the various stable sets as possible outcomes of well-known auction procedures when groups of buyers may form bidder rings. We also show that the union of all stable sets can be described as the union of convex polytopes all of whose vertices are marginal contribution payoff vectors. Consequently, each stable set is contained in the Weber set. The Shapley value, however, typically falls outside the union of all stable sets.
Resumo:
We consider various lexicographic allocation procedures for coalitional games with transferable utility where the payoffs are computed in an externally given order of the players. The common feature of the methods is that if the allocation is in the core, it is an extreme point of the core. We first investigate the general relationship between these allocations and obtain two hierarchies on the class of balanced games. Secondly, we focus on assignment games and sharpen some of these general relationship. Our main result is the coincidence of the sets of lemarals (vectors of lexicographic maxima over the set of dual coalitionally rational payoff vectors), lemacols (vectors of lexicographic maxima over the core) and extreme core points. As byproducts, we show that, similarly to the core and the coalitionally rational payoff set, also the dual coalitionally rational payoff set of an assignment game is determined by the individual and mixed-pair coalitions, and present an efficient and elementary way to compute these basic dual coalitional values. This provides a way to compute the Alexia value (the average of all lemacols) with no need to obtain the whole coalitional function of the dual assignment game.
Resumo:
In this paper we consider a primal-dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.
Resumo:
We determine the endogenous order of moves in a mixed pricesetting duopoly. In contrast to the existing literature on mixed oligopolies we establish the payo equivalence of the games with an exogenously given order of moves if the most plausible equilibrium is realized in the market. Hence, in this case it does not matter whether one becomes a leader or a follower. We also establish that replacing a private firm by a public firm in the standard Bertrand-Edgeworth game with capacity constraints increases social welfare and that a pure-strategy equilibrium always exists.
Resumo:
Ordinary type spaces (Heifetz and Samet, 1998) are essential ingredients of incomplete information games. With ordinary type spaces one can grab the notions of beliefs, belief hierarchies and common prior etc. However, ordinary type spaces cannot handle the notions of finite belief hierarchy and unawareness among others. In this paper we consider a generalization of ordinary type spaces, and introduce the so called generalized type spaces which can grab all notions ordinary type spaces can and more, finite belief hierarchies and unawareness among others. We also demonstrate that the universal generalized type space exists.
Resumo:
We consider linearly weighted versions of the least core and the (pre)nucleolus and investigate the reduction possibilities in their computation. We slightly extend some well-known related results and establish their counterparts by using the dual game. Our main results imply, for example, that if the core of the game is not empty, all dually inessential coalitions (which can be weakly minorized by a partition in the dual game) can be ignored when we compute the per-capita least core and the per-capita (pre)nucleolus from the dual game. This could lead to the design of polynomial time algorithms for the per-capita (and other monotone nondecreasingly weighted versions of the) least core and the (pre)nucleolus in specific classes of balanced games with polynomial many dually esential coalitions.
Resumo:
A correlation scheme (leading to a special equilibrium called “soft” correlated equilibrium) is applied for two-person finite games in extensive form with perfect information. Randomization by an umpire takes place over the leaves of the game tree. At every decision point players have the choice either to follow the recommendation of the umpire blindly or freely choose any other action except the one suggested. This scheme can lead to Pareto-improved outcomes of other correlated equilibria. Computational issues of maximizing a linear function over the set of soft correlated equilibria are considered and a linear-time algorithm in terms of the number of edges in the game tree is given for a special procedure called “subgame perfect optimization”.