5 resultados para Equilíbrio de Nash

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the preference domains on which the Borda count satisfies Maskin monotonicity. The basic concept is the notion of a "cyclic permutation domain" which arises by fixing one particular ordering of alternatives and including all its cyclic permutations. The cyclic permutation domains are exactly the maximal domains on which the Borda count is strategy-proof when combined with every possible tie breaking rule. It turns out that the Borda count is monotonic on a larger class of domains. We show that the maximal domains on which the Borda count satisfies Maskin monotonicity are the "cyclically nested permutation domains" which are obtained from the cyclic permutation domains in an appropriately specified recursive way. ------ *We thank József Mala for posing the question of Nash implementability on restricted domains that led to this research. We are very grateful to two anonymous referees and an associate editor for their helpful comments and suggestions. The second author gratefully acknowledges financial support from the Hungarian Academy of Sciences (MTA) through the Bolyai János research fellowship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is searching for necessary and sufficient conditions which are to be imposed on the demand curve to guarantee the existence of pure strategy Nash equilibrium in a Bertrand-Edgeworth game with capacity constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “Nash program” initiated by Nash (Econometrica 21:128–140, 1953) is a research agenda aiming at representing every axiomatically determined cooperative solution to a game as a Nash outcome of a reasonable noncooperative bargaining game. The L-Nash solution first defined by Forgó (Interactive Decisions. Lecture Notes in Economics and Mathematical Systems, vol 229. Springer, Berlin, pp 1–15, 1983) is obtained as the limiting point of the Nash bargaining solution when the disagreement point goes to negative infinity in a fixed direction. In Forgó and Szidarovszky (Eur J Oper Res 147:108–116, 2003), the L-Nash solution was related to the solution of multiciteria decision making and two different axiomatizations of the L-Nash solution were also given in this context. In this paper, finite bounds are established for the penalty of disagreement in certain special two-person bargaining problems, making it possible to apply all the implementation models designed for Nash bargaining problems with a finite disagreement point to obtain the L-Nash solution as well. For another set of problems where this method does not work, a version of Rubinstein’s alternative offer game (Econometrica 50:97–109, 1982) is shown to asymptotically implement the L-Nash solution. If penalty is internalized as a decision variable of one of the players, then a modification of Howard’s game (J Econ Theory 56:142–159, 1992) also implements the L-Nash solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ely and Peski (2006) and Friedenberg and Meier (2010) provide examples when changing the type space behind a game, taking a "bigger" type space, induces changes of Bayesian Nash Equilibria, in other words, the Bayesian Nash Equilibrium is not invariant under type morphisms. In this paper we introduce the notion of strong type morphism. Strong type morphisms are stronger than ordinary and conditional type morphisms (Ely and Peski, 2006), and we show that Bayesian Nash Equilibria are not invariant under strong type morphisms either. We present our results in a very simple, finite setting, and conclude that there is no chance to get reasonable assumptions for Bayesian Nash Equilibria to be invariant under any kind of reasonable type morphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new axiomatization of the Nash equilibrium correspondence for n-person games based on independence of irrelevant strategies is given. Using a flexible general model, it is proved that the Nash equilibrium correspondence is the only solution to satisfy the axioms of non-emptiness, weak one-person rationality, independence of irrelevant strategies and converse independence of irrelevant strategies on the class of subgames of a fixed finite n-person game which admit at least one Nash equilibrium. It is also shown that these axioms are logically independent.