7 resultados para Convex Metric Spaces
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
It is often assumed (for analytical convenience, but also in accordance with common intuition) that consumer preferences are convex. In this paper, we consider circumstances under which such preferences are (or are not) optimal. In particular, we investigate a setting in which goods possess some hidden quality with known distribution, and the consumer chooses a bundle of goods that maximizes the probability that he receives some threshold level of this quality. We show that if the threshold is small relative to consumption levels, preferences will tend to be convex; whereas the opposite holds if the threshold is large. Our theory helps explain a broad spectrum of economic behavior (including, in particular, certain common commercial advertising strategies), suggesting that sensitivity to information about thresholds is deeply rooted in human psychology.
Resumo:
The notion of common prior is well-understood and widely-used in the incomplete information games literature. For ordinary type spaces the common prior is de�fined. Pint�er and Udvari (2011) introduce the notion of generalized type space. Generalized type spaces are models for various bonded rationality issues, for �nite belief hierarchies, unawareness among others. In this paper we de�ne the notion of common prior for generalized types spaces. Our results are as follows: the generalization (1) suggests a new form of common prior for ordinary type spaces, (2) shows some quantum game theoretic results (Brandenburger and La Mura, 2011) in new light.
Resumo:
We generalize exactness to games with non-transferable utility (NTU). A game is exact if for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We consider ve generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be uni¯ed under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.
Resumo:
The existence of an inverse limit of an inverse system of (probability) measure spaces has been investigated since the very beginning of the birth of the modern probability theory. Results from Kolmogorov [10], Bochner [2], Choksi [5], Metivier [14], Bourbaki [3] among others have paved the way of the deep understanding of the problem under consideration. All the above results, however, call for some topological concepts, or at least ones which are closely related topological ones. In this paper we investigate purely measurable inverse systems of (probability) measure spaces, and give a sucient condition for the existence of a unique inverse limit. An example for the considered purely measurable inverse systems of (probability) measure spaces is also given.
Resumo:
Ordinary type spaces (Heifetz and Samet, 1998) are essential ingredients of incomplete information games. With ordinary type spaces one can grab the notions of beliefs, belief hierarchies and common prior etc. However, ordinary type spaces cannot handle the notions of finite belief hierarchy and unawareness among others. In this paper we consider a generalization of ordinary type spaces, and introduce the so called generalized type spaces which can grab all notions ordinary type spaces can and more, finite belief hierarchies and unawareness among others. We also demonstrate that the universal generalized type space exists.
Resumo:
The notion of common prior is well-understood and widely-used in the incomplete information games literature. For ordinary type spaces the common prior is defined. Pinter and Udvari (2011) introduce the notion of generalized type space. Generalized type spaces are models for various bonded rationality issues, for nite belief hierarchies, unawareness among others. In this paper we dene the notion of common prior for generalized types spaces. Our results are as follows: the generalization (1) suggests a new form of common prior for ordinary type spaces, (2) shows some quantum game theoretic results (Brandenburger and La Mura, 2011) in new light.
Resumo:
In this note we present a cardinally convex game (Sharkey, 1981) with empty core. Sharkey assumes that V (N) is convex, we do not do so, hence we do not contradict Sharkey's result.