9 resultados para systems and data security

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a paper the method of complex systems and processes clustering based use of genetic algorithm is offered. The aspects of its realization and shaping of fitness-function are considered. The solution of clustering task of Ukraine areas on socio-economic indexes is represented and comparative analysis with outcomes of classical methods is realized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Симеон Т. Стефанов, Велика И. Драгиева - В работата е изследвана еволюцията на системи от множества върху n-мерната евклидова сфера S^n. Установена е връзката на такива системи с хомотопичните групи на сферите. Получени са някои комбинаторни приложения за многостени.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents in brief the “2nd Generation Open Access Infrastructure for Research in Europe” project (http://www.openaire.eu/) and what is done in Bulgaria during the last year in the area of open access to scientific information and data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 49N35,49N55,65Lxx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was supported in part by the EU „2nd Generation Open Access Infrastructure for Research in Europe" (OpenAIRE+). The autumn training school Development and Promotion of Open Access to Scientific Information and Research is organized in the frame of the Fourth International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage—DiPP2014 (September 18–21, 2014, Veliko Tarnovo, Bulgaria, http://dipp2014.math.bas.bg/), organized under the UNESCO patronage. The main organiser is the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences with the support of EU project FOSTER (http://www.fosteropenscience.eu/) and the P. R. Slaveykov Regional Public Library in Veliko Tarnovo, Bulgaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.