12 resultados para system parameter identification
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.
Resumo:
Growth of complexity and functional importance of integrated navigation systems (INS) leads to high losses at the equipment refusals. The paper is devoted to the INS diagnosis system development, allowing identifying the cause of malfunction. The proposed solutions permit taking into account any changes in sensors dynamic and accuracy characteristics by means of the appropriate error models coefficients. Under actual conditions of INS operation, the determination of current values of the sensor models and estimation filter parameters rely on identification procedures. The results of full-scale experiments are given, which corroborate the expediency of INS error models parametric identification in bench test process.
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.
Resumo:
Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.
Resumo:
The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.
Resumo:
AMS Subj. Classification: 92C30
Resumo:
This paper presents two algorithms for one-parameter local bifurcations of equilibrium points of dynamical systems. The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.
Resumo:
Миглена Г. Кирилова-Донева - Едномерен експеримент на релаксация беше извършен с 14 образци от човешка пъпна фасция. Механичното поведение на фасцията по време на релаксация беше моделирано прилагайки нелинейната теория на Максвел-Гуревич-Рабинович. Параметрите на модела за изследваните образци бяха определени и стойностите им бяха сравнени в зависимост от посоката на натоварване на образците по време на експеримента. Установено бе, че стойностите на началния вискозитет ∗η0 и на параметъра ∗m, който се влияе от скоростта на деформация на материала се изменят в много широки граници не само за образци от различни донори, но и за образци от един донор. В резултат от прилагането на модела бе изчислено изменението на вискозитета и вискозната деформация на материала по време на релаксацията. Бе показано, че изменението на вискозитета и вискозната деформация зависи от посоката на натоварване на образците.
Resumo:
In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016