6 resultados para self-organizing maps (SOM)
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02
Resumo:
This paper presents a technique for building complex and adaptive meshes for urban and architectural design. The combination of a self-organizing map and cellular automata algorithms stands as a method for generating meshes otherwise static. This intends to be an auxiliary tool for the architect or the urban planner, improving control over large amounts of spatial information. The traditional grid employed as design aid is improved to become more general and flexible.
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.
Resumo:
Floods represent the most devastating natural hazards in the world, affecting more people and causing more property damage than any other natural phenomena. One of the important problems associated with flood monitoring is flood extent extraction from satellite imagery, since it is impractical to acquire the flood area through field observations. This paper presents a method to flood extent extraction from synthetic-aperture radar (SAR) images that is based on intelligent computations. In particular, we apply artificial neural networks, self-organizing Kohonen’s maps (SOMs), for SAR image segmentation and classification. We tested our approach to process data from three different satellite sensors: ERS-2/SAR (during flooding on Tisza river, Ukraine and Hungary, 2001), ENVISAT/ASAR WSM (Wide Swath Mode) and RADARSAT-1 (during flooding on Huaihe river, China, 2007). Obtained results showed the efficiency of our approach.
Resumo:
There are a great deal of approaches in artificial intelligence, some of them also coming from biology and neirophysiology. In this paper we are making a review, discussing many of them, and arranging our discussion around the autonomous agent research. We highlight three aspect in our classification: type of abstraction applied for representing agent knowledge, the implementation of hypothesis processing mechanism, allowed degree of freedom in behaviour and self-organizing. Using this classification many approaches in artificial intelligence are evaluated. Then we summarize all discussed ideas and propose a series of general principles for building an autonomous adaptive agent.
Resumo:
2000 Mathematics Subject Classification: 54H25, 47H10.